BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29106736)

  • 41. Determinants of voltage-dependent gating and open-state stability in the S5 segment of Shaker potassium channels.
    Kanevsky M; Aldrich RW
    J Gen Physiol; 1999 Aug; 114(2):215-42. PubMed ID: 10435999
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Presynaptic recordings from Drosophila: correlation of macroscopic and single-channel K+ currents.
    Martínez-Padrón M; Ferrús A
    J Neurosci; 1997 May; 17(10):3412-24. PubMed ID: 9133367
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microscopic origin of gating current fluctuations in a potassium channel voltage sensor.
    Freites JA; Schow EV; White SH; Tobias DJ
    Biophys J; 2012 Jun; 102(11):L44-6. PubMed ID: 22713585
    [TBL] [Abstract][Full Text] [Related]  

  • 44. K(+)-dependent gating of K(ir)1.1 channels is linked to pH gating through a conformational change in the pore.
    Schulte U; Weidemann S; Ludwig J; Ruppersberg J; Fakler B
    J Physiol; 2001 Jul; 534(Pt 1):49-58. PubMed ID: 11432991
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Control of outer vestibule dynamics and current magnitude in the Kv2.1 potassium channel.
    Andalib P; Wood MJ; Korn SJ
    J Gen Physiol; 2002 Nov; 120(5):739-55. PubMed ID: 12407083
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Activation of shaker potassium channels. I. Characterization of voltage-dependent transitions.
    Schoppa NE; Sigworth FJ
    J Gen Physiol; 1998 Feb; 111(2):271-94. PubMed ID: 9450944
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural basis of ion permeation gating in Slo2.1 K+ channels.
    Garg P; Gardner A; Garg V; Sanguinetti MC
    J Gen Physiol; 2013 Nov; 142(5):523-42. PubMed ID: 24166878
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Voltage-insensitive gating after charge-neutralizing mutations in the S4 segment of Shaker channels.
    Bao H; Hakeem A; Henteleff M; Starkus JG; Rayner MD
    J Gen Physiol; 1999 Jan; 113(1):139-51. PubMed ID: 9874694
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modal behavior of the Kv1.1 channel conferred by the Kvbeta1.1 subunit and its regulation by dephosphorylation of Kv1.1.
    Singer-Lahat D; Dascal N; Lotan I
    Pflugers Arch; 1999 Dec; 439(1-2):18-26. PubMed ID: 10650996
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hysteresis of KcsA potassium channel's activation- deactivation gating is caused by structural changes at the channel's selectivity filter.
    Tilegenova C; Cortes DM; Cuello LG
    Proc Natl Acad Sci U S A; 2017 Mar; 114(12):3234-3239. PubMed ID: 28265056
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Voltage and temperature dependence of single K+ channels isolated from canine cardiac sarcoplasmic reticulum.
    Shen WK; Rasmusson RL; Liu QY; Crews AL; Strauss HC
    Biophys J; 1993 Aug; 65(2):747-54. PubMed ID: 8218900
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of cysteine substitutions on the topology of the S4 segment of the Shaker potassium channel: implications for molecular models of gating.
    Wang MH; Yusaf SP; Elliott DJ; Wray D; Sivaprasadarao A
    J Physiol; 1999 Dec; 521 Pt 2(Pt 2):315-26. PubMed ID: 10581304
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stabilization of the conductive conformation of a voltage-gated K+ (Kv) channel: the lid mechanism.
    Santos JS; Syeda R; Montal M
    J Biol Chem; 2013 Jun; 288(23):16619-16628. PubMed ID: 23609443
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Voltage and Ca2+ activation of single large-conductance Ca2+-activated K+ channels described by a two-tiered allosteric gating mechanism.
    Rothberg BS; Magleby KL
    J Gen Physiol; 2000 Jul; 116(1):75-99. PubMed ID: 10871641
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular basis of K+ channel inactivation gating.
    Isacoff EY; Jan YN; Jan LY
    EXS; 1993; 63():338-51. PubMed ID: 8380732
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interference of shot noise of open-channel current with analysis of fast gating: patchers do not (Yet) have to care.
    Schroeder I; Hansen UP
    J Membr Biol; 2009 Jun; 229(3):153-63. PubMed ID: 19551329
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kinetic structure of large-conductance Ca2+-activated K+ channels suggests that the gating includes transitions through intermediate or secondary states. A mechanism for flickers.
    Rothberg BS; Magleby KL
    J Gen Physiol; 1998 Jun; 111(6):751-80. PubMed ID: 9607935
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Strengths and limits of Beta distributions as a means of reconstructing the true single-channel current in patch clamp time series with fast gating.
    Schroeder I; Hansen UP
    J Membr Biol; 2006 Apr; 210(3):199-212. PubMed ID: 16909337
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Changing Val-76 towards Kir channels drastically influences the folding and gating properties of the bacterial potassium channel KcsA.
    Raja M; Vales E
    Biophys Chem; 2009 Oct; 144(3):95-100. PubMed ID: 19665280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.