BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 29107006)

  • 1. Conformational preferences and structural analysis of hypermodified nucleoside, peroxywybutosine (o2yW) found at 37
    Fandilolu PM; Kamble AS; Sambhare SB; Sonawane KD
    Gene; 2018 Jan; 641():310-325. PubMed ID: 29107006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural significance of hypermodified nucleic acid base hydroxywybutine (OHyW) which occur at 37th position in the anticodon loop of yeast tRNA(Phe).
    Kumbhar NM; Kumbhar BV; Sonawane KD
    J Mol Graph Model; 2012 Sep; 38():174-85. PubMed ID: 23073221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iso-energetic multiple conformations of hypermodified nucleic acid base wybutine (yW) which occur at 37(th) position in anticodon loop of tRNA(Phe).
    Kumbhar NM; Sonawane KD
    J Mol Graph Model; 2011 Jun; 29(7):935-46. PubMed ID: 21530341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational preferences of modified nucleoside N(4)-acetylcytidine, ac4C occur at "wobble" 34th position in the anticodon loop of tRNA.
    Kumbhar BV; Kamble AD; Sonawane KD
    Cell Biochem Biophys; 2013 Jul; 66(3):797-816. PubMed ID: 23408308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of hypermodified nucleosides lysidine and t(6)A to recognize the AUA codon instead of AUG: a molecular dynamics simulation study.
    Sonawane KD; Sambhare SB
    Integr Biol (Camb); 2015 Nov; 7(11):1387-95. PubMed ID: 26215455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Significance of Conformational Preferences and Ribose-Ring-Puckering of Hyper Modified Nucleotide 5'-Monophosphate 2-Methylthio Cyclic N
    Dound AS; Fandilolu PM; Sonawane KD
    Cell Biochem Biophys; 2022 Dec; 80(4):665-680. PubMed ID: 35965304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational Preferences of Modified Nucleoside 5-Taurinomethyluridine, τm(5)U Occur at 'wobble' 34th Position in the Anticodon Loop of tRNA.
    Kamble AS; Kumbhar BV; Sambhare SB; Bavi RS; Sonawane KD
    Cell Biochem Biophys; 2015 Apr; 71(3):1589-603. PubMed ID: 25388845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Posttranscriptional modifications at the 37th position in the anticodon stem-loop of tRNA: structural insights from MD simulations.
    Seelam Prabhakar P; Takyi NA; Wetmore SD
    RNA; 2021 Feb; 27(2):202-220. PubMed ID: 33214333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preferences of AAA/AAG codon recognition by modified nucleosides, τm
    Sonawane KD; Kamble AS; Fandilolu PM
    J Biomol Struct Dyn; 2018 Dec; 36(16):4182-4196. PubMed ID: 29243556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Naturally-occurring modification restricts the anticodon domain conformational space of tRNA(Phe).
    Stuart JW; Koshlap KM; Guenther R; Agris PF
    J Mol Biol; 2003 Dec; 334(5):901-18. PubMed ID: 14643656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe).
    Cabello-Villegas J; Winkler ME; Nikonowicz EP
    J Mol Biol; 2002 Jun; 319(5):1015-34. PubMed ID: 12079344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics of the anticodon domain of yeast tRNA(Phe): codon-anticodon interaction.
    Lahiri A; Nilsson L
    Biophys J; 2000 Nov; 79(5):2276-89. PubMed ID: 11053108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of modified nucleosides of yeast tRNA(Phe) in ribosomal binding.
    Ashraf SS; Guenther RH; Ansari G; Malkiewicz A; Sochacka E; Agris PF
    Cell Biochem Biophys; 2000; 33(3):241-52. PubMed ID: 11325044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticodon domain methylated nucleosides of yeast tRNA(Phe) are significant recognition determinants in the binding of a phage display selected peptide.
    Mucha P; Szyk A; Rekowski P; Weiss PA; Agris PF
    Biochemistry; 2001 Nov; 40(47):14191-9. PubMed ID: 11714272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aminoacyl-tRNA synthetase and U54 methyltransferase recognize conformations of the yeast tRNA(Phe) anticodon and T stem/loop domain.
    Guenther RH; Bakal RS; Forrest B; Chen Y; Sengupta R; Nawrot B; Sochacka E; Jankowska J; Kraszewski A; Malkiewicz A
    Biochimie; 1994; 76(12):1143-51. PubMed ID: 7748949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Structural Dynamics of tRNA(Phe) with Respect to Hinge Region Methylated Guanosine: A Computational Approach.
    Sonawane KD; Bavi RS; Sambhare SB; Fandilolu PM
    Cell Biochem Biophys; 2016 Jun; 74(2):157-73. PubMed ID: 27216172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translocation of a tRNA with an extended anticodon through the ribosome.
    Phelps SS; Gaudin C; Yoshizawa S; Benitez C; Fourmy D; Joseph S
    J Mol Biol; 2006 Jul; 360(3):610-22. PubMed ID: 16787653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Codon reading properties of tRNA variants substituted within the anticodon loop.
    Ouchi R; Takai K; Yokoyama S; Takaku H
    Nucleic Acids Symp Ser; 1997; (37):115-6. PubMed ID: 9586026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of wyosine derivatives in tRNA(Phe) of Archaea: role of a remarkable bifunctional tRNA(Phe):m1G/imG2 methyltransferase.
    Urbonavičius J; Meškys R; Grosjean H
    RNA; 2014 Jun; 20(6):747-53. PubMed ID: 24837075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purine bases at position 37 of tRNA stabilize codon-anticodon interaction in the ribosomal A site by stacking and Mg2+-dependent interactions.
    Konevega AL; Soboleva NG; Makhno VI; Semenkov YP; Wintermeyer W; Rodnina MV; Katunin VI
    RNA; 2004 Jan; 10(1):90-101. PubMed ID: 14681588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.