These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 29107011)

  • 21. Precision requirements for cost-effective operation of analytical processes.
    Westgard JO; Burnett RW
    Clin Chem; 1990 Sep; 36(9):1629-32. PubMed ID: 2119916
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Establishment and evaluation of Voting algorithm-based internal quality control (ViQC), a patient-based real-time quality control.
    Liu Y; Zheng H; Zhang W; Xu Z; Yu J; Song H; Gu C; Chen Y
    Clin Chim Acta; 2024 Jul; 561():119821. PubMed ID: 38901630
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tolerance limits for short-term analytical bias and analytical imprecision derived from clinical assay specificity.
    Klee GG
    Clin Chem; 1993 Jul; 39(7):1514-8. PubMed ID: 8330413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of a between-run component of variation, choice of control limits, and shape of error distribution on the performance characteristics of rules for internal quality control.
    Westgard JO; Falk H; Groth T
    Clin Chem; 1979 Mar; 25(3):394-400. PubMed ID: 262178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and implementation of quality control plans that integrate moving average and internal quality control: incorporating the best of both worlds.
    van Rossum HH; van den Broek D
    Clin Chem Lab Med; 2019 Aug; 57(9):1329-1338. PubMed ID: 30903753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Internal quality control system for non-stationary, non-ergodic analytical processes based upon exponentially weighted estimation of process means and process standard deviation.
    Jansen RT; Laeven M; Kardol W
    Clin Chem Lab Med; 2002 Jun; 40(6):616-24. PubMed ID: 12211659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assuring analytical quality through process planning and quality control.
    Westgard JO
    Arch Pathol Lab Med; 1992 Jul; 116(7):765-9. PubMed ID: 1497451
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of patient-based real-time quality control algorithm performance on different types of analytical error.
    Duan X; Wang B; Zhu J; Shao W; Wang H; Shen J; Wu W; Jiang W; Yiu KL; Pan B; Guo W
    Clin Chim Acta; 2020 Dec; 511():329-335. PubMed ID: 33127347
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Implementation and application of moving average as continuous analytical quality control instrument demonstrated for 24 routine chemistry assays.
    Rossum HHV; Kemperman H
    Clin Chem Lab Med; 2017 Jul; 55(8):1142-1151. PubMed ID: 28076303
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of drift effects before calculating the standard deviation as a measure of analytical imprecision.
    Haeckel R; Schneider B
    J Clin Chem Clin Biochem; 1983 Aug; 21(8):491-7. PubMed ID: 6631335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Average of delta: a new quality control tool for clinical laboratories.
    Jones GR
    Ann Clin Biochem; 2016 Jan; 53(Pt 1):133-40. PubMed ID: 25800407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analytical goals developed from the inherent error of medical tests.
    Ross JW; Fraser MD
    Clin Chem; 1993 Jul; 39(7):1481-93; discussion 1493-4. PubMed ID: 8330410
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance goals for the laboratory testing of antithrombin, protein C and protein S.
    Meijer P; Haverkate F; Kluft C
    Thromb Haemost; 2006 Nov; 96(5):584-9. PubMed ID: 17080214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ten-Month Evaluation of the Routine Application of Patient Moving Average for Real-Time Quality Control in a Hospital Setting.
    van Rossum HH; van den Broek D
    J Appl Lab Med; 2020 Nov; 5(6):1184-1193. PubMed ID: 32533149
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Setting performance goals and evaluating total analytical error for diagnostic assays.
    Krouwer JS
    Clin Chem; 2002 Jun; 48(6 Pt 1):919-27. PubMed ID: 12029009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The application of theoretical goals based on biological variation data in proficiency testing.
    Fraser CG
    Arch Pathol Lab Med; 1988 Apr; 112(4):404-15. PubMed ID: 3355342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changing the paradigm of laboratory quality control through implementation of real-time test results monitoring: For patients by patients.
    Fleming JK; Katayev A
    Clin Biochem; 2015 May; 48(7-8):508-13. PubMed ID: 25549976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Steady state errors and risk of a QC strategy.
    Mackay MA; Badrick TC
    Clin Biochem; 2019 Feb; 64():37-43. PubMed ID: 30552866
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Charts of operational process specifications ("OPSpecs charts") for assessing the precision, accuracy, and quality control needed to satisfy proficiency testing performance criteria.
    Westgard JO
    Clin Chem; 1992 Jul; 38(7):1226-33; discussion 1245-50. PubMed ID: 1623586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A model for managing quality control for a network of clinical chemistry instruments measuring the same analyte.
    Giannoli JM; Bernard M; L'Hirondel J; Heim A; Badrick T
    Clin Chem Lab Med; 2024 Apr; 62(5):853-860. PubMed ID: 37999926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.