BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 29107124)

  • 1. Genetic inhibition of PPARγ S112 phosphorylation reduces bone formation and stimulates marrow adipogenesis.
    Ge C; Zhao G; Li B; Li Y; Cawthorn WP; MacDougald OA; Franceschi RT
    Bone; 2018 Feb; 107():1-9. PubMed ID: 29107124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reciprocal Control of Osteogenic and Adipogenic Differentiation by ERK/MAP Kinase Phosphorylation of Runx2 and PPARγ Transcription Factors.
    Ge C; Cawthorn WP; Li Y; Zhao G; Macdougald OA; Franceschi RT
    J Cell Physiol; 2016 Mar; 231(3):587-96. PubMed ID: 26206105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discoidin Receptor 2 Controls Bone Formation and Marrow Adipogenesis.
    Ge C; Wang Z; Zhao G; Li B; Liao J; Sun H; Franceschi RT
    J Bone Miner Res; 2016 Dec; 31(12):2193-2203. PubMed ID: 27341689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PPARγ suppression inhibits adipogenesis but does not promote osteogenesis of human mesenchymal stem cells.
    Yu WH; Li FG; Chen XY; Li JT; Wu YH; Huang LH; Wang Z; Li P; Wang T; Lahn BT; Xiang AP
    Int J Biochem Cell Biol; 2012 Feb; 44(2):377-84. PubMed ID: 22120652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. S-nitrosoglutathione reductase-dependent PPARγ denitrosylation participates in MSC-derived adipogenesis and osteogenesis.
    Cao Y; Gomes SA; Rangel EB; Paulino EC; Fonseca TL; Li J; Teixeira MB; Gouveia CH; Bianco AC; Kapiloff MS; Balkan W; Hare JM
    J Clin Invest; 2015 Apr; 125(4):1679-91. PubMed ID: 25798618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PPARγ and Wnt Signaling in Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells.
    Yuan Z; Li Q; Luo S; Liu Z; Luo D; Zhang B; Zhang D; Rao P; Xiao J
    Curr Stem Cell Res Ther; 2016; 11(3):216-25. PubMed ID: 25986621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteoblast-targeted suppression of PPARγ increases osteogenesis through activation of mTOR signaling.
    Sun H; Kim JK; Mortensen R; Mutyaba LP; Hankenson KD; Krebsbach PH
    Stem Cells; 2013 Oct; 31(10):2183-92. PubMed ID: 23766271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geranylgeranyl pyrophosphate stimulates PPARγ expression and adipogenesis through the inhibition of osteoblast differentiation.
    Weivoda MM; Hohl RJ
    Bone; 2012 Feb; 50(2):467-76. PubMed ID: 22019459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Mechanisms of PPAR-γ Governing MSC Osteogenic and Adipogenic Differentiation.
    Zhuang H; Zhang X; Zhu C; Tang X; Yu F; Shang GW; Cai X
    Curr Stem Cell Res Ther; 2016; 11(3):255-64. PubMed ID: 26027680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel PPARγ2 modulator sLZIP controls the balance between adipogenesis and osteogenesis during mesenchymal stem cell differentiation.
    Kim J; Ko J
    Cell Death Differ; 2014 Oct; 21(10):1642-55. PubMed ID: 24948012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structurally-diverse, PPARγ-activating environmental toxicants induce adipogenesis and suppress osteogenesis in bone marrow mesenchymal stromal cells.
    Watt J; Schlezinger JJ
    Toxicology; 2015 May; 331():66-77. PubMed ID: 25777084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new concept underlying stem cell lineage skewing that explains the detrimental effects of thiazolidinediones on bone.
    Bruedigam C; Eijken M; Koedam M; van de Peppel J; Drabek K; Chiba H; van Leeuwen JP
    Stem Cells; 2010 May; 28(5):916-27. PubMed ID: 20213769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TLE3, transducing-like enhancer of split 3, suppresses osteoblast differentiation of bone marrow stromal cells.
    Kokabu S; Nguyen T; Ohte S; Sato T; Katagiri T; Yoda T; Rosen V
    Biochem Biophys Res Commun; 2013 Aug; 438(1):205-10. PubMed ID: 23880346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S100A16 inhibits osteogenesis but stimulates adipogenesis.
    Li D; Zhang R; Zhu W; Xue Y; Zhang Y; Huang Q; Liu M; Liu Y
    Mol Biol Rep; 2013 May; 40(5):3465-73. PubMed ID: 23526364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular switching of osteoblastogenesis versus adipogenesis: implications for targeted therapies.
    Takada I; Kouzmenko AP; Kato S
    Expert Opin Ther Targets; 2009 May; 13(5):593-603. PubMed ID: 19397478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis.
    David V; Martin A; Lafage-Proust MH; Malaval L; Peyroche S; Jones DB; Vico L; Guignandon A
    Endocrinology; 2007 May; 148(5):2553-62. PubMed ID: 17317771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARγ expression and enhancing Runx2 expression.
    Zhang L; Su P; Xu C; Chen C; Liang A; Du K; Peng Y; Huang D
    J Pineal Res; 2010 Nov; 49(4):364-72. PubMed ID: 20738756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adipocytes decrease Runx2 expression in osteoblastic cells: roles of PPARγ and adiponectin.
    Liu LF; Shen WJ; Zhang ZH; Wang LJ; Kraemer FB
    J Cell Physiol; 2010 Nov; 225(3):837-45. PubMed ID: 20589837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucosylceramide synthase regulates adipo-osteogenic differentiation through synergistic activation of PPARγ with GlcCer.
    Jang HJ; Lim S; Kim JM; Yoon S; Lee CY; Hwang HJ; Shin JW; Shin KJ; Kim HY; Park KI; Nam D; Lee JY; Yea K; Hirabayashi Y; Lee YJ; Chae YC; Suh PG; Choi JH
    FASEB J; 2020 Jan; 34(1):1270-1287. PubMed ID: 31914593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis.
    Zhang C; Li L; Jiang Y; Wang C; Geng B; Wang Y; Chen J; Liu F; Qiu P; Zhai G; Chen P; Quan R; Wang J
    FASEB J; 2018 Aug; 32(8):4444-4458. PubMed ID: 29533735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.