These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 29107239)

  • 1. Mini review: Gustatory reception of chemicals affecting host feeding in aedine mosquitoes.
    Sparks JT; Dickens JC
    Pestic Biochem Physiol; 2017 Oct; 142():15-20. PubMed ID: 29107239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gustatory receptor expression in the labella and tarsi of Aedes aegypti.
    Sparks JT; Vinyard BT; Dickens JC
    Insect Biochem Mol Biol; 2013 Dec; 43(12):1161-71. PubMed ID: 24157615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane feeding of dengue patient's blood as a substitute for direct skin feeding in studying Aedes-dengue virus interaction.
    Tan CH; Wong PS; Li MZ; Yang HT; Chong CS; Lee LK; Yuan S; Leo YS; Ng LC; Lye DC
    Parasit Vectors; 2016 Apr; 9():211. PubMed ID: 27083158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The genetics of chemoreception in the labella and tarsi of Aedes aegypti.
    Sparks JT; Bohbot JD; Dickens JC
    Insect Biochem Mol Biol; 2014 May; 48():8-16. PubMed ID: 24582661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peculiar liquid-feeding and pathogen transmission behavior of Aedes togoi and comparison with Anopheles sinensis.
    Lee SJ; Kang D; Lee SC; Ha YR
    Sci Rep; 2016 Feb; 6():20464. PubMed ID: 26839008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of the G protein-coupled sulfakinin receptor inhibits blood meal intake in the mosquito Aedes aegypti.
    Jiang L; Xie XB; Zhang L; Tang Y; Zhu X; Huang Y; Hong Y; Hansson BS; Cui ZJ; Han Q
    FASEB J; 2024 Aug; 38(15):e23864. PubMed ID: 39109513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood meal induced microRNA regulates development and immune associated genes in the Dengue mosquito vector, Aedes aegypti.
    Hussain M; Walker T; O'Neill SL; Asgari S
    Insect Biochem Mol Biol; 2013 Feb; 43(2):146-52. PubMed ID: 23202267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silencing the buzz: a new approach to population suppression of mosquitoes by feeding larvae double-stranded RNAs.
    Whyard S; Erdelyan CN; Partridge AL; Singh AD; Beebe NW; Capina R
    Parasit Vectors; 2015 Feb; 8():96. PubMed ID: 25880645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IDENTIFICATION AND EXPRESSION ANALYSIS OF TWO 14-3-3 PROTEINS IN THE MOSQUITO Aedes aegypti, AN IMPORTANT ARBOVIRUSES VECTOR.
    Trujillo-Ocampo A; Cázares-Raga FE; Celestino-Montes A; Cortés-Martínez L; Rodríguez MH; Hernández-Hernández FC
    Arch Insect Biochem Physiol; 2016 Nov; 93(3):143-159. PubMed ID: 27592842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An entomological review of invasive mosquitoes in Europe.
    Medlock JM; Hansford KM; Versteirt V; Cull B; Kampen H; Fontenille D; Hendrickx G; Zeller H; Van Bortel W; Schaffner F
    Bull Entomol Res; 2015 Dec; 105(6):637-63. PubMed ID: 25804287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Host-feeding pattern of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in heterogeneous landscapes of South Andaman, Andaman and Nicobar Islands, India.
    Sivan A; Shriram AN; Sunish IP; Vidhya PT
    Parasitol Res; 2015 Sep; 114(9):3539-46. PubMed ID: 26220560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular docking and simulation studies of gustatory receptor of Aedes aegypti: A potent drug target to distract host-seeking behaviour in mosquitoes.
    Gupta KK; Sethi G; Jayaraman M
    J Vector Borne Dis; 2016; 53(2):179-84. PubMed ID: 27353589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apoptosis-related genes control autophagy and influence DENV-2 infection in the mosquito vector, Aedes aegypti.
    Eng MW; van Zuylen MN; Severson DW
    Insect Biochem Mol Biol; 2016 Sep; 76():70-83. PubMed ID: 27418459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dengue Virus-1 Infection Did Not Alter the Behavioral Response of Aedes aegypti (Diptera: Culicidae) to DEET.
    Sugiharto VA; Murphy JR; Turell MJ; Olsen CH; Stewart VA; Colacicco-Mayhugh MG; Grieco JP; Achee NL
    J Med Entomol; 2016 May; 53(3):687-691. PubMed ID: 27026163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological recordings and RNA sequencing of the gustatory appendages of the yellow-fever mosquito Aedes aegypti.
    Sparks JT; Dickens JC
    J Vis Exp; 2014 Dec; (94):. PubMed ID: 25590536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. History of Aedes mosquitoes in Hawaii.
    Winchester JC; Kapan DD
    J Am Mosq Control Assoc; 2013 Jun; 29(2):154-63. PubMed ID: 23923330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fructose variation in the dengue vector, Aedes aegypti, during high and low transmission seasons in the Mae Sot region of Thailand.
    Spencer CY; Pendergast TH; Harrington LC
    J Am Mosq Control Assoc; 2005 Jun; 21(2):177-81. PubMed ID: 16033119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human bloodfeeding by the recently introduced mosquito, Aedes japonicus japonicus, and public health implications.
    Molaei G; Farajollahi A; Scott JJ; Gaugler R; Andreadis TG
    J Am Mosq Control Assoc; 2009 Jun; 25(2):210-4. PubMed ID: 19653507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aedes aegypti genomics.
    Severson DW; Knudson DL; Soares MB; Loftus BJ
    Insect Biochem Mol Biol; 2004 Jul; 34(7):715-21. PubMed ID: 15242713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dengue-2-virus-interacting polypeptides involved in mosquito cell infection.
    Paingankar MS; Gokhale MD; Deobagkar DN
    Arch Virol; 2010 Sep; 155(9):1453-61. PubMed ID: 20571839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.