These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 29107319)

  • 1. Thermodynamic Activity-Based Progress Curve Analysis in Enzyme Kinetics.
    Pleiss J
    Trends Biotechnol; 2018 Mar; 36(3):234-238. PubMed ID: 29107319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic Activity-Based Solvent Design for Bioreactions.
    Wangler A; Held C; Sadowski G
    Trends Biotechnol; 2019 Oct; 37(10):1038-1041. PubMed ID: 31160055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Michaelis-Menten kinetics under non-isothermal conditions.
    Lervik A; Kjelstrup S; Qian H
    Phys Chem Chem Phys; 2015 Jan; 17(2):1317-24. PubMed ID: 25425022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvation effects upon the thermodynamic substrate activity; correlation with the kinetics of enzyme catalyzed reactions. I. Effects of added reagents such as methanol upon alpha-chymotrypsin.
    Smith RR; Canady WJ
    Biophys Chem; 1992 Jun; 43(2):173-87. PubMed ID: 1498250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the flux as the driving force for nonequilibrium dynamics and thermodynamics in non-Michaelis-Menten enzyme kinetics.
    Liu Q; Wang J
    Proc Natl Acad Sci U S A; 2020 Jan; 117(2):923-930. PubMed ID: 31879351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic activity-based intrinsic enzyme kinetic sheds light on enzyme-solvent interactions.
    Grosch JH; Wagner D; Nistelkas V; Spieß AC
    Biotechnol Prog; 2017 Jan; 33(1):96-103. PubMed ID: 27813314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Practical steady-state enzyme kinetics.
    Lorsch JR
    Methods Enzymol; 2014; 536():3-15. PubMed ID: 24423262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A note on the kinetics of enzyme action: a decomposition that highlights thermodynamic effects.
    Noor E; Flamholz A; Liebermeister W; Bar-Even A; Milo R
    FEBS Lett; 2013 Sep; 587(17):2772-7. PubMed ID: 23892083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations.
    Goličnik M
    Biochem Mol Biol Educ; 2011; 39(2):117-25. PubMed ID: 21445903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress Curve Analysis Within BioCatNet: Comparing Kinetic Models for Enzyme-Catalyzed Self-Ligation.
    Buchholz PCF; Ohs R; Spiess AC; Pleiss J
    Biotechnol J; 2019 Mar; 14(3):e1800183. PubMed ID: 29999245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of kinetic parameters when modifiers are bound in enzyme-catalyzed reactions.
    Alberty RA
    J Phys Chem B; 2010 Feb; 114(4):1684-9. PubMed ID: 20055362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics of Bioreactions.
    Held C; Sadowski G
    Annu Rev Chem Biomol Eng; 2016 Jun; 7():395-414. PubMed ID: 27276551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic predictions for biocatalysis in nonconventional media: theory, tests, and recommendations for experimental design and analysis.
    Halling PJ
    Enzyme Microb Technol; 1994 Mar; 16(3):178-206. PubMed ID: 7764598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the estimation errors of K
    Stroberg W; Schnell S
    Biophys Chem; 2016 Dec; 219():17-27. PubMed ID: 27677118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical thermodynamics and rapid-equilibrium enzyme kinetics.
    Alberty RA
    J Phys Chem B; 2010 Dec; 114(51):17003-12. PubMed ID: 21090637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Michaelis-Menten equation for degradation of insoluble substrate.
    Andersen M; Kari J; Borch K; Westh P
    Math Biosci; 2018 Feb; 296():93-97. PubMed ID: 29197509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Enzymatic Reactions Using ITC.
    Zambelli B
    Methods Mol Biol; 2019; 1964():251-266. PubMed ID: 30929248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracting signal from noise: kinetic mechanisms from a Michaelis-Menten-like expression for enzymatic fluctuations.
    Moffitt JR; Bustamante C
    FEBS J; 2014 Jan; 281(2):498-517. PubMed ID: 24428386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex kinetics of fluctuating enzymes: phase diagram characterization of a minimal kinetic scheme.
    Min W; Jiang L; Xie XS
    Chem Asian J; 2010 May; 5(5):1129-38. PubMed ID: 20235274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-course of enzyme-catalyzed competing substrate degradation for michaelian behavior and for enzymes showing activation/inhibition by excess substrate.
    Goličnik M; Masson P
    Chem Biol Interact; 2019 Aug; 309():108704. PubMed ID: 31211951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.