These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 29107319)

  • 21. Direct determination of enzyme kinetic parameters from single reactions using a new progress curve analysis tool.
    Bäuerle F; Zotter A; Schreiber G
    Protein Eng Des Sel; 2017 Mar; 30(3):149-156. PubMed ID: 27744288
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Utilization of integrated Michaelis-Menten equations for enzyme inhibition diagnosis and determination of kinetic constants using Solver supplement of Microsoft Office Excel.
    Bezerra RM; Fraga I; Dias AA
    Comput Methods Programs Biomed; 2013 Jan; 109(1):26-31. PubMed ID: 23021091
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined co-solvent and pressure effect on kinetics of a peptide hydrolysis: an activity-based approach.
    Knierbein M; Wangler A; Luong TQ; Winter R; Held C; Sadowski G
    Phys Chem Chem Phys; 2019 Oct; 21(40):22224-22229. PubMed ID: 31576857
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characteristics of nearly dry enzymes in organic solvents: implications for biocatalysis in the absence of water.
    Clark DS
    Philos Trans R Soc Lond B Biol Sci; 2004 Aug; 359(1448):1299-307; discussion 1307, 1323-8. PubMed ID: 15306384
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cosolvent and pressure effects on enzyme-catalysed hydrolysis reactions.
    Held C; Stolzke T; Knierbein M; Jaworek MW; Luong TQ; Winter R; Sadowski G
    Biophys Chem; 2019 Sep; 252():106209. PubMed ID: 31254793
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temperature and pH dependence of enzyme-catalyzed hydrolysis of trans-methylstyrene oxide. A unifying kinetic model for observed hysteresis, cooperativity, and regioselectivity.
    Lindberg D; de la Fuente Revenga M; Widersten M
    Biochemistry; 2010 Mar; 49(10):2297-304. PubMed ID: 20146441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetics of trypsin-catalyzed hydrolysis determined by isothermal titration calorimetry.
    Maximova K; Trylska J
    Anal Biochem; 2015 Oct; 486():24-34. PubMed ID: 26119333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic measurements for enzyme immobilization.
    Cooney MJ
    Methods Mol Biol; 2011; 679():207-25. PubMed ID: 20865399
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determining enzyme kinetics via isothermal titration calorimetry.
    Demarse NA; Killian MC; Hansen LD; Quinn CF
    Methods Mol Biol; 2013; 978():21-30. PubMed ID: 23423886
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Boosting the kinetic efficiency of formate dehydrogenase by combining the effects of temperature, high pressure and co-solvent mixtures.
    Jaworek MW; Gajardo-Parra NF; Sadowski G; Winter R; Held C
    Colloids Surf B Biointerfaces; 2021 Dec; 208():112127. PubMed ID: 34626897
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermodynamic Activity-Based Interpretation of Enzyme Kinetics.
    Pleiss J
    Trends Biotechnol; 2017 May; 35(5):379-382. PubMed ID: 28190624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature dependence of binding and catalysis for human serum arylesterase/paraoxonase.
    Debord J; Bollinger JC; Harel M; Dantoine T
    Biochimie; 2014 Feb; 97():72-7. PubMed ID: 24096087
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamics and Kinetics of Glycolytic Reactions. Part II: Influence of Cytosolic Conditions on Thermodynamic State Variables and Kinetic Parameters.
    Vogel K; Greinert T; Reichard M; Held C; Harms H; Maskow T
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33113841
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Explicit analytic approximations for time-dependent solutions of the generalized integrated Michaelis-Menten equation.
    Goličnik M
    Anal Biochem; 2011 Apr; 411(2):303-5. PubMed ID: 21241654
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The origins of enzyme kinetics.
    Cornish-Bowden A
    FEBS Lett; 2013 Sep; 587(17):2725-30. PubMed ID: 23791665
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Validity of the Michaelis-Menten equation--steady-state or reactant stationary assumption: that is the question.
    Schnell S
    FEBS J; 2014 Jan; 281(2):464-72. PubMed ID: 24245583
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enzyme catalyzed reactions: from experiment to computational mechanism reconstruction.
    Srividhya J; Mourão MA; Crampin EJ; Schnell S
    Comput Biol Chem; 2010 Feb; 34(1):11-8. PubMed ID: 19945917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generalized rate equation for single-substrate enzyme catalyzed reactions.
    Kargi F
    Biochem Biophys Res Commun; 2009 Apr; 382(1):157-9. PubMed ID: 19265680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction and Experimental Validation of Co-Solvent Influence on Michaelis Constants: A Thermodynamic Activity-Based Approach.
    Wangler A; Böttcher D; Hüser A; Sadowski G; Held C
    Chemistry; 2018 Nov; 24(61):16418-16425. PubMed ID: 30067281
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonrenewal statistics in the catalytic activity of enzyme molecules at mesoscopic concentrations.
    Saha S; Ghose S; Adhikari R; Dua A
    Phys Rev Lett; 2011 Nov; 107(21):218301. PubMed ID: 22181931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.