BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 29107578)

  • 41. Quantification of MicroRNAs by Coupling Cyclic Enzymatic Amplification with Microfluidic Voltage-Assisted Liquid Desorption Electrospray Ionization Mass Spectrometry.
    Li X; Rout P; Xu R; Pan L; Tchounwou PB; Ma Y; Liu YM
    Anal Chem; 2018 Nov; 90(22):13663-13669. PubMed ID: 30359531
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A target-triggered dual amplification strategy for sensitive detection of microRNA.
    Lv W; Zhao J; Situ B; Li B; Ma W; Liu J; Wu Z; Wang W; Yan X; Zheng L
    Biosens Bioelectron; 2016 Sep; 83():250-5. PubMed ID: 27131998
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Duplex-Specific Nuclease-Mediated Amplification Strategy for Mass Spectrometry Quantification of MiRNA-200c in Breast Cancer Stem Cells.
    Kuang Y; Cao J; Xu F; Chen Y
    Anal Chem; 2019 Jul; 91(14):8820-8826. PubMed ID: 31246422
    [TBL] [Abstract][Full Text] [Related]  

  • 44. MoS
    Yu X; Hu L; Zhang F; Wang M; Xia Z; Wei W
    Mikrochim Acta; 2018 Mar; 185(4):239. PubMed ID: 29594715
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A PDDA/poly(2,6-pyridinedicarboxylic acid)-CNTs composite film DNA electrochemical sensor and its application for the detection of specific sequences related to PAT gene and NOS gene.
    Yang T; Zhang W; Du M; Jiao K
    Talanta; 2008 May; 75(4):987-94. PubMed ID: 18585173
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced electrochemiluminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay.
    Jie G; Li L; Chen C; Xuan J; Zhu JJ
    Biosens Bioelectron; 2009 Jul; 24(11):3352-8. PubMed ID: 19477112
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor.
    Zhang Y; Zhang CY
    Anal Chem; 2012 Jan; 84(1):224-31. PubMed ID: 22103863
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Highly sensitive and selective microRNA detection based on DNA-bio-bar-code and enzyme-assisted strand cycle exponential signal amplification.
    Dong H; Meng X; Dai W; Cao Y; Lu H; Zhou S; Zhang X
    Anal Chem; 2015 Apr; 87(8):4334-40. PubMed ID: 25830473
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Backbone-modified molecular beacons for highly sensitive and selective detection of microRNAs based on duplex specific nuclease signal amplification.
    Lin X; Zhang C; Huang Y; Zhu Z; Chen X; Yang CJ
    Chem Commun (Camb); 2013 Aug; 49(65):7243-5. PubMed ID: 23842896
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Micro-RNA detection based on fluorescence resonance energy transfer of DNA-carbon quantum dots probes.
    Khakbaz F; Mahani M
    Anal Biochem; 2017 Apr; 523():32-38. PubMed ID: 28159568
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Target-initiated labeling for the dual-amplified detection of multiple microRNAs.
    Wang Y; Lau C; Lu J
    Anal Chim Acta; 2017 Nov; 992():76-84. PubMed ID: 29054152
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gold nanoparticle-based homogeneous fluorescent aptasensor for multiplex detection.
    Kim YS; Jurng J
    Analyst; 2011 Sep; 136(18):3720-4. PubMed ID: 21799952
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of surface charge of PDDA-protected gold nanoparticles on the specificity and efficiency of DNA polymerase chain reaction.
    Yuan L; He Y
    Analyst; 2013 Jan; 138(2):539-45. PubMed ID: 23170311
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhancement of the Upconversion Emission by Visible-to-Near-Infrared Fluorescent Graphene Quantum Dots for miRNA Detection.
    Laurenti M; Paez-Perez M; Algarra M; Alonso-Cristobal P; Lopez-Cabarcos E; Mendez-Gonzalez D; Rubio-Retama J
    ACS Appl Mater Interfaces; 2016 May; 8(20):12644-51. PubMed ID: 27153453
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MnO
    Hu C; Kong XJ; Yu RQ; Chen TT; Chu X
    Anal Sci; 2017; 33(7):783-788. PubMed ID: 28690254
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Duplex-Specific Nuclease-Enabled Target Recycling on Semiconducting Metal-Organic Framework Heterojunctions for Energy-Transfer-Based Organic Photoelectrochemical Transistor miRNA Biosensing.
    Gao G; Chen JH; Li CJ; Wang CS; Hu J; Zhou H; Lin P; Xu Q; Zhao WW
    Anal Chem; 2022 Nov; 94(45):15856-15863. PubMed ID: 36315837
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Iodide-modified Ag nanoparticles coupled with DSN-Assisted cycling amplification for label-free and ultrasensitive SERS detection of MicroRNA-21.
    Yao Y; Zhang H; Tian T; Liu Y; Zhu R; Ji J; Liu B
    Talanta; 2021 Dec; 235():122728. PubMed ID: 34517596
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Förster Resonance Energy Transfer-Based Soft Nanoballs for Specific and Amplified Detection of MicroRNAs.
    Cheng YY; Xie YF; Li CM; Li YF; Huang CZ
    Anal Chem; 2019 Sep; 91(17):11023-11029. PubMed ID: 31266308
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Luminescent quantum dots for miRNA detection.
    Goryacheva OA; Mishra PK; Goryacheva IY
    Talanta; 2018 Mar; 179():456-465. PubMed ID: 29310260
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A light-up "G-quadruplex nanostring" for label-free and selective detection of miRNA via duplex-specific nuclease mediated tandem rolling circle amplification.
    Liu LQ; Yin F; Lu Y; Yan XL; Wu CC; Li X; Li C
    Nanomedicine; 2021 Feb; 32():102339. PubMed ID: 33227538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.