These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 29107841)
1. A novel non-dairy beverage from durian pulp fermented with selected probiotics and yeast. Lu Y; Putra SD; Liu SQ Int J Food Microbiol; 2018 Jan; 265():1-8. PubMed ID: 29107841 [TBL] [Abstract][Full Text] [Related]
2. Chemical consequences of three commercial strains of Oenococcus oeni co-inoculated with Torulaspora delbrueckii in durian wine fermentation. Lu Y; Chua JY; Huang D; Lee PR; Liu SQ Food Chem; 2017 Jan; 215():209-18. PubMed ID: 27542469 [TBL] [Abstract][Full Text] [Related]
3. Yeast ratio is a critical factor for sequential fermentation of papaya wine by Williopsis saturnus and Saccharomyces cerevisiae. Lee PR; Kho SH; Yu B; Curran P; Liu SQ Microb Biotechnol; 2013 Jul; 6(4):385-93. PubMed ID: 23171032 [TBL] [Abstract][Full Text] [Related]
4. Proteins involved in wine aroma compounds metabolism by a Saccharomyces cerevisiae flor-velum yeast strain grown in two conditions. Moreno-García J; García-Martínez T; Millán MC; Mauricio JC; Moreno J Food Microbiol; 2015 Oct; 51():1-9. PubMed ID: 26187821 [TBL] [Abstract][Full Text] [Related]
5. Effects of fermentation temperature and aeration on production of natural isoamyl acetate by Williopsis saturnus var. saturnus. Yilmaztekin M; Cabaroglu T; Erten H Biomed Res Int; 2013; 2013():870802. PubMed ID: 23862159 [TBL] [Abstract][Full Text] [Related]
6. Influence of Williopsis saturnus yeasts in combination with Saccharomyces cerevisiae on wine fermentation. Erten H; Tanguler H Lett Appl Microbiol; 2010 May; 50(5):474-9. PubMed ID: 20214731 [TBL] [Abstract][Full Text] [Related]
7. Profile of volatile compounds during papaya juice fermentation by a mixed culture of Saccharomyces cerevisiae and Williopsis saturnus. Lee PR; Ong YL; Yu B; Curran P; Liu SQ Food Microbiol; 2010 Oct; 27(7):853-61. PubMed ID: 20688226 [TBL] [Abstract][Full Text] [Related]
8. Biotransformation of chemical constituents of durian wine with simultaneous alcoholic fermentation by Torulaspora delbrueckii and malolactic fermentation by Oenococcus oeni. Lu Y; Chua JY; Huang D; Lee PR; Liu SQ Appl Microbiol Biotechnol; 2016 Oct; 100(20):8877-88. PubMed ID: 27405438 [TBL] [Abstract][Full Text] [Related]
9. The effects of co- and sequential inoculation of Torulaspora delbrueckii and Pichia kluyveri on chemical compositions of durian wine. Lu Y; Voon MKW; Chua JY; Huang D; Lee PR; Liu SQ Appl Microbiol Biotechnol; 2017 Nov; 101(21):7853-7863. PubMed ID: 28942463 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the performance of Torulaspora delbrueckii, Williopsis saturnus, and Kluyveromyces lactis in lychee wine fermentation. Chen D; Yap ZY; Liu SQ Int J Food Microbiol; 2015 Aug; 206():45-50. PubMed ID: 25955287 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of bifidobacteria survival by Williopsis saturnus var. saturnus in milk. Yeo AY; Toh MZ; Liu SQ Benef Microbes; 2016 Feb; 7(1):135-144. PubMed ID: 26615855 [TBL] [Abstract][Full Text] [Related]
12. Combined effects of fermentation temperature and pH on kinetic changes of chemical constituents of durian wine fermented with Saccharomyces cerevisiae. Lu Y; Voon MK; Huang D; Lee PR; Liu SQ Appl Microbiol Biotechnol; 2017 Apr; 101(7):3005-3014. PubMed ID: 27957628 [TBL] [Abstract][Full Text] [Related]
13. Chemical composition, sensorial properties, and aroma-active compounds of ciders fermented with Hanseniaspora osmophila and Torulaspora quercuum in co- and sequential fermentations. Wei J; Zhang Y; Qiu Y; Guo H; Ju H; Wang Y; Yuan Y; Yue T Food Chem; 2020 Feb; 306():125623. PubMed ID: 31606633 [TBL] [Abstract][Full Text] [Related]
14. Enhancing wine ester biosynthesis in mixed Hanseniaspora uvarum/Saccharomyces cerevisiae fermentation by nitrogen nutrient addition. Hu K; Jin GJ; Xu YH; Xue SJ; Qiao SJ; Teng YX; Tao YS Food Res Int; 2019 Sep; 123():559-566. PubMed ID: 31285005 [TBL] [Abstract][Full Text] [Related]
15. Assessment of chemical composition and sensorial properties of ciders fermented with different non-Saccharomyces yeasts in pure and mixed fermentations. Wei J; Zhang Y; Wang Y; Ju H; Niu C; Song Z; Yuan Y; Yue T Int J Food Microbiol; 2020 Apr; 318():108471. PubMed ID: 31841786 [TBL] [Abstract][Full Text] [Related]
16. Fermentation of three varieties of mango juices with a mixture of Saccharomyces cerevisiae and Williopsis saturnus var. mrakii. Li X; Chan LJ; Yu B; Curran P; Liu SQ Int J Food Microbiol; 2012 Aug; 158(1):28-35. PubMed ID: 22800660 [TBL] [Abstract][Full Text] [Related]
17. In vitro determination of volatile compound development during starter culture-controlled fermentation of Cucurbitaceae cotyledons. Kamda AG; Ramos CL; Fokou E; Duarte WF; Mercy A; Germain K; Dias DR; Schwan RF Int J Food Microbiol; 2015 Jan; 192():58-65. PubMed ID: 25306300 [TBL] [Abstract][Full Text] [Related]
18. The effect of lactic acid fermentation with different bacterial strains on the chemical composition, immunoreactive properties, and sensory quality of sweet buttermilk. Ogrodowczyk AM; Kalicki B; Wróblewska B Food Chem; 2021 Aug; 353():129512. PubMed ID: 33740512 [TBL] [Abstract][Full Text] [Related]
19. Volatile profile of elderberry juice: Effect of lactic acid fermentation using L. plantarum, L. rhamnosus and L. casei strains. Ricci A; Cirlini M; Levante A; Dall'Asta C; Galaverna G; Lazzi C Food Res Int; 2018 Mar; 105():412-422. PubMed ID: 29433231 [TBL] [Abstract][Full Text] [Related]
20. Induction of simultaneous and sequential malolactic fermentation in durian wine. Taniasuri F; Lee PR; Liu SQ Int J Food Microbiol; 2016 Aug; 230():1-9. PubMed ID: 27104664 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]