These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29107928)

  • 1. The influence of eye-movements on the development of a movement sequence representation during observational and physical practice.
    Massing M; Blandin Y; Panzer S
    Acta Psychol (Amst); 2018 Jan; 182():1-8. PubMed ID: 29107928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scheduling observational and physical practice: influence on the coding of simple motor sequences.
    Ellenbuerger T; Boutin A; Blandin Y; Shea CH; Panzer S
    Q J Exp Psychol (Hove); 2012; 65(7):1260-73. PubMed ID: 22494362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnifying visual target information and the role of eye movements in motor sequence learning.
    Massing M; Blandin Y; Panzer S
    Acta Psychol (Amst); 2016 Jan; 163():59-64. PubMed ID: 26613386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dyad training protocols and the development of a motor sequence representation.
    Panzer S; Haab T; Massing M; Pfeifer C; Shea CH
    Acta Psychol (Amst); 2019 Oct; 201():102947. PubMed ID: 31722259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observational training in visual half-fields and the coding of movement sequences.
    Ellenbuerger T; Boutin A; Panzer S; Blandin Y; Fischer L; Schorer J; Shea CH
    Hum Mov Sci; 2012 Dec; 31(6):1436-48. PubMed ID: 22939848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation and physical practice: coding of simple motor sequences.
    Gruetzmacher N; Panzer S; Blandin Y; Shea CH
    Q J Exp Psychol (Hove); 2011 Jun; 64(6):1111-23. PubMed ID: 21302186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of concurrent visual feedback on coding of on-line and pre-planned movement sequences.
    Leinen P; Shea CH; Panzer S
    Acta Psychol (Amst); 2015 Feb; 155():92-100. PubMed ID: 25594377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inter-manual transfer and practice: coding of simple motor sequences.
    Panzer S; Krueger M; Muehlbauer T; Kovacs AJ; Shea CH
    Acta Psychol (Amst); 2009 Jun; 131(2):99-109. PubMed ID: 19389659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observing different model types interspersed with physical practice has no effect on consolidation or motor learning of an elbow flexion-extension task.
    Moore CM; Lelievre N; Ste-Marie DM
    Hum Mov Sci; 2019 Feb; 63():96-107. PubMed ID: 30508690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of eye movements in motor sequence learning.
    Vieluf S; Massing M; Blandin Y; Leinen P; Panzer S
    Hum Mov Sci; 2015 Apr; 40():220-36. PubMed ID: 25617992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning a single limb multijoint coordination pattern: the impact of a mechanical constraint on the coordination dynamics of learning and transfer.
    Buchanan JJ
    Exp Brain Res; 2004 May; 156(1):39-54. PubMed ID: 14689134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eye movements are not a prerequisite for learning movement sequence timing through observation.
    Hayes SJ; Timmis MA; Bennett SJ
    Acta Psychol (Amst); 2009 Jul; 131(3):202-8. PubMed ID: 19500770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemispheric asymmetries of a motor memory in a recognition test after learning a movement sequence.
    Leinen P; Panzer S; Shea CH
    Acta Psychol (Amst); 2016 Nov; 171():36-46. PubMed ID: 27648751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transfer of movement sequences: bigger is better.
    Dean NJ; Kovacs AJ; Shea CH
    Acta Psychol (Amst); 2008 Feb; 127(2):355-68. PubMed ID: 17723220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proportional and nonproportional transfer of movement sequences.
    Wilde H; Shea CH
    Q J Exp Psychol (Hove); 2006 Sep; 59(9):1626-47. PubMed ID: 16873113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of acute exercise on visuomotor adaptation, learning, and inter-limb transfer.
    Neva JL; Ma JA; Orsholits D; Boisgontier MP; Boyd LA
    Exp Brain Res; 2019 Apr; 237(4):1109-1127. PubMed ID: 30778618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Representation of movement sequences is related to task characteristics.
    Kovacs AJ; Han DW; Shea CH
    Acta Psychol (Amst); 2009 Sep; 132(1):54-61. PubMed ID: 19631919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related effects in interlimb practice on coding complex movement sequences.
    Panzer S; Gruetzmacher N; Fries U; Krueger M; Shea CH
    Hum Mov Sci; 2011 Jun; 30(3):459-74. PubMed ID: 21349597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-Task and Single-Task Practice Does Not Influence the Attentional Demands of Movement Sequence Representations.
    Pfeifer C; Harenz J; Shea CH; Panzer S
    J Mot Behav; 2024; 56(4):462-474. PubMed ID: 38484757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Across-task binding: The development of a representation in learning a continuous movement sequence.
    Panzer S; Pfeifer C; Daniel L; Gaschler R; Haider H; Shea CH
    Hum Mov Sci; 2024 Apr; 94():103195. PubMed ID: 38359609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.