BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 29107980)

  • 21. Direct identification of base-paired RNA nucleotides by correlated chemical probing.
    Krokhotin A; Mustoe AM; Weeks KM; Dokholyan NV
    RNA; 2017 Jan; 23(1):6-13. PubMed ID: 27803152
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Revolutions in RNA secondary structure prediction.
    Mathews DH
    J Mol Biol; 2006 Jun; 359(3):526-32. PubMed ID: 16500677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynalign II: common secondary structure prediction for RNA homologs with domain insertions.
    Fu Y; Sharma G; Mathews DH
    Nucleic Acids Res; 2014 Dec; 42(22):13939-48. PubMed ID: 25416799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Capturing alternative secondary structures of RNA by decomposition of base-pairing probabilities.
    Hagio T; Sakuraba S; Iwakiri J; Mori R; Asai K
    BMC Bioinformatics; 2018 Feb; 19(Suppl 1):38. PubMed ID: 29504917
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling RNA Secondary Structure with Sequence Comparison and Experimental Mapping Data.
    Tan Z; Sharma G; Mathews DH
    Biophys J; 2017 Jul; 113(2):330-338. PubMed ID: 28735622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. STRAL: progressive alignment of non-coding RNA using base pairing probability vectors in quadratic time.
    Dalli D; Wilm A; Mainz I; Steger G
    Bioinformatics; 2006 Jul; 22(13):1593-9. PubMed ID: 16613908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved prediction of RNA secondary structure by integrating the free energy model with restraints derived from experimental probing data.
    Wu Y; Shi B; Ding X; Liu T; Hu X; Yip KY; Yang ZR; Mathews DH; Lu ZJ
    Nucleic Acids Res; 2015 Sep; 43(15):7247-59. PubMed ID: 26170232
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RNA canonical and non-canonical base pairing types: a recognition method and complete repertoire.
    Lemieux S; Major F
    Nucleic Acids Res; 2002 Oct; 30(19):4250-63. PubMed ID: 12364604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stacking geometry for non-canonical G:U wobble base pair containing dinucleotide sequences in RNA: dispersion-corrected DFT-D study.
    Mondal M; Mukherjee S; Halder S; Bhattacharyya D
    Biopolymers; 2015 Jun; 103(6):328-38. PubMed ID: 25652776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ProbKnot: fast prediction of RNA secondary structure including pseudoknots.
    Bellaousov S; Mathews DH
    RNA; 2010 Oct; 16(10):1870-80. PubMed ID: 20699301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using the RNAstructure Software Package to Predict Conserved RNA Structures.
    Mathews DH
    Curr Protoc Bioinformatics; 2014 Jun; 46():12.4.1-12.4.22. PubMed ID: 24939126
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNA secondary structure modeling at consistent high accuracy using differential SHAPE.
    Rice GM; Leonard CW; Weeks KM
    RNA; 2014 Jun; 20(6):846-54. PubMed ID: 24742934
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conformational specificity of non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis.
    Mukherjee S; Bansal M; Bhattacharyya D
    J Comput Aided Mol Des; 2006; 20(10-11):629-45. PubMed ID: 17124630
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rtools: a web server for various secondary structural analyses on single RNA sequences.
    Hamada M; Ono Y; Kiryu H; Sato K; Kato Y; Fukunaga T; Mori R; Asai K
    Nucleic Acids Res; 2016 Jul; 44(W1):W302-7. PubMed ID: 27131356
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct Inference of Base-Pairing Probabilities with Neural Networks Improves Prediction of RNA Secondary Structures with Pseudoknots.
    Akiyama M; Sakakibara Y; Sato K
    Genes (Basel); 2022 Nov; 13(11):. PubMed ID: 36421829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Method to Predict the Structure and Stability of RNA/RNA Complexes.
    Xu X; Chen SJ
    Methods Mol Biol; 2016; 1490():63-72. PubMed ID: 27665593
    [TBL] [Abstract][Full Text] [Related]  

  • 37. De novo tertiary structure prediction using RNA123--benchmarking and application to Macugen.
    Eriksson ES; Joshi L; Billeter M; Eriksson LA
    J Mol Model; 2014 Aug; 20(8):2389. PubMed ID: 25107358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ConStruct: a tool for thermodynamic controlled prediction of conserved secondary structure.
    Lück R; Gräf S; Steger G
    Nucleic Acids Res; 1999 Nov; 27(21):4208-17. PubMed ID: 10518612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inferring the conformation of RNA base pairs and triples from patterns of sequence variation.
    Gautheret D; Gutell RR
    Nucleic Acids Res; 1997 Apr; 25(8):1559-64. PubMed ID: 9092662
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous prediction of RNA secondary structure and helix coaxial stacking.
    Shareghi P; Wang Y; Malmberg R; Cai L
    BMC Genomics; 2012 Jun; 13 Suppl 3(Suppl 3):S7. PubMed ID: 22759616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.