These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 29108574)
1. Novel method for manipulation of anion-exchange selectivity by derivatizing hydroxyl groups in the proximity of quaternary nitrogen ion-exchange sites with glycidol. Pohl CA Talanta; 2018 Jan; 177():18-25. PubMed ID: 29108574 [TBL] [Abstract][Full Text] [Related]
2. Anion exchangers with negatively charged functionalities in hyperbranched ion-exchange layers for ion chromatography. Uzhel AS; Zatirakha AV; Smirnov KN; Smolenkov AD; Shpigun OA J Chromatogr A; 2017 Jan; 1482():57-64. PubMed ID: 28040268 [TBL] [Abstract][Full Text] [Related]
3. Anion exchangers with branched functional ion exchange layers of different hydrophilicity for ion chromatography. Shchukina OI; Zatirakha AV; Smolenkov AD; Nesterenko PN; Shpigun OA J Chromatogr A; 2015 Aug; 1408():78-86. PubMed ID: 26159253 [TBL] [Abstract][Full Text] [Related]
5. Glycidol-carbohydrate hybrids: a new family of DNA alkylating agents. Toshima K; Okuno Y; Matsumura S Bioorg Med Chem Lett; 2003 Oct; 13(19):3281-3. PubMed ID: 12951109 [TBL] [Abstract][Full Text] [Related]
6. Ion-exchange selectivity of anion exchange resin modified with polystyrenesulfonic acid. Endo N; Ikuta R; Higa M; Matsusaki K Anal Sci; 2004 Jul; 20(7):1099-101. PubMed ID: 15293411 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of Monoalkyl Glyceryl Ethers by Ring Opening of Glycidol with Alcohols in the Presence of Lewis Acids. Cucciniello R; Ricciardi M; Vitiello R; Di Serio M; Proto A; Capacchione C ChemSusChem; 2016 Dec; 9(23):3272-3275. PubMed ID: 27880034 [TBL] [Abstract][Full Text] [Related]
8. Glycidol: an Hydroxyl-Containing Epoxide Playing the Double Role of Substrate and Catalyst for CO Della Monica F; Buonerba A; Grassi A; Capacchione C; Milione S ChemSusChem; 2016 Dec; 9(24):3457-3464. PubMed ID: 27870388 [TBL] [Abstract][Full Text] [Related]
9. Novel polymer-based anion-exchangers with covalently-bonded functional layers of quaternized polyethyleneimine for ion chromatography. Shchukina OI; Zatirakha AV; Uzhel AS; Smolenkov AD; Shpigun OA Anal Chim Acta; 2017 Apr; 964():187-194. PubMed ID: 28351635 [TBL] [Abstract][Full Text] [Related]
10. Manipulating selectivity of covalently-bonded hyperbranched anion exchangers toward organic acids. Part IV: General algorithm based on the variation of external part of the functional layer. Uzhel AS; Gorbovskaya AV; Shpigun OA; Zatirakha AV J Chromatogr A; 2020 Dec; 1634():461648. PubMed ID: 33207292 [TBL] [Abstract][Full Text] [Related]
11. Chemisorptive enantioselectivity of chiral epoxides on tartaric-acid modified Pd(111): three-point bonding. Mahapatra M; Tysoe WT Phys Chem Chem Phys; 2015 Feb; 17(7):5450-8. PubMed ID: 25615560 [TBL] [Abstract][Full Text] [Related]
12. Ion-chromatographic selectivity of polyelectrolyte sorbents based on some aliphatic and aromatic ionenes. Pirogov AV; Krokhin OV; Platonov MM; Deryugina YI; Shpigun OA J Chromatogr A; 2000 Jul; 884(1-2):31-9. PubMed ID: 10917420 [TBL] [Abstract][Full Text] [Related]
13. Removal of chloride ion from aqueous solution by ZnAl-NO(3) layered double hydroxides as anion-exchanger. Lv L; Sun P; Gu Z; Du H; Pang X; Tao X; Xu R; Xu L J Hazard Mater; 2009 Jan; 161(2-3):1444-9. PubMed ID: 18571847 [TBL] [Abstract][Full Text] [Related]
14. Ion-exchange and hydrophobic interactions affecting selectivity for neutral and charged solutes on three structurally similar agglomerated ion-exchange and mixed-mode stationary phases. Kazarian AA; Taylor MR; Haddad PR; Nesterenko PN; Paull B Anal Chim Acta; 2013 Nov; 803():143-53. PubMed ID: 24216208 [TBL] [Abstract][Full Text] [Related]
15. Molecular recognition of chiral conformers: a rotational study of the dimers of glycidol. Maris A; Giuliano BM; Bonazzi D; Caminati W J Am Chem Soc; 2008 Oct; 130(42):13860-1. PubMed ID: 18817399 [TBL] [Abstract][Full Text] [Related]
16. Probing chiral solute-water hydrogen bonding networks by chirality transfer effects: a vibrational circular dichroism study of glycidol in water. Yang G; Xu Y J Chem Phys; 2009 Apr; 130(16):164506. PubMed ID: 19405593 [TBL] [Abstract][Full Text] [Related]
17. A spectroscopic and computational investigation of the conformational structural changes induced by hydrogen bonding networks in the glycidol-water complex. Conrad AR; Teumelsan NH; Wang PE; Tubergen MJ J Phys Chem A; 2010 Jan; 114(1):336-42. PubMed ID: 19904907 [TBL] [Abstract][Full Text] [Related]
18. Glycidol, a Valuable Substrate for the Synthesis of Monoalkyl Glyceryl Ethers: A Simplified Life Cycle Approach. Ricciardi M; Passarini F; Vassura I; Proto A; Capacchione C; Cucciniello R; Cespi D ChemSusChem; 2017 May; 10(10):2291-2300. PubMed ID: 28376258 [TBL] [Abstract][Full Text] [Related]
19. Ion exchange and intercalation properties of layered double hydroxides towards halide anions. Costantino U; Vivani R; Bastianini M; Costantino F; Nocchetti M Dalton Trans; 2014 Aug; 43(30):11587-96. PubMed ID: 24940938 [TBL] [Abstract][Full Text] [Related]
20. Factors relevant to the production of (R)-(+)-glycidol (2,3-epoxy-1-propanol) from racemic glycidol by enantioselective oxidation with Acetobacter pasteurianus ATCC 12874. Geerlof A; Jongejan JA; van Dooren TJ; Racemakers-Franken PC; van den Tweel WJ; Duine JA Enzyme Microb Technol; 1994 Dec; 16(12):1059-63. PubMed ID: 7765650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]