These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 29109067)
1. The insertion in the double-stranded RNA binding domain of human Drosha is important for its function. Zhang X; Li P; Lin J; Huang H; Yin B; Zeng Y Biochim Biophys Acta Gene Regul Mech; 2017 Dec; 1860(12):1179-1188. PubMed ID: 29109067 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide Mapping of DROSHA Cleavage Sites on Primary MicroRNAs and Noncanonical Substrates. Kim B; Jeong K; Kim VN Mol Cell; 2017 Apr; 66(2):258-269.e5. PubMed ID: 28431232 [TBL] [Abstract][Full Text] [Related]
4. The core microprocessor component DiGeorge syndrome critical region 8 (DGCR8) is a nonspecific RNA-binding protein. Roth BM; Ishimaru D; Hennig M J Biol Chem; 2013 Sep; 288(37):26785-99. PubMed ID: 23893406 [TBL] [Abstract][Full Text] [Related]
5. Engineering double-stranded RNA binding activity into the Drosha double-stranded RNA binding domain results in a loss of microRNA processing function. Kranick JC; Chadalavada DM; Sahu D; Showalter SA PLoS One; 2017; 12(8):e0182445. PubMed ID: 28792523 [TBL] [Abstract][Full Text] [Related]
6. Structural Basis for pri-miRNA Recognition by Drosha. Jin W; Wang J; Liu CP; Wang HW; Xu RM Mol Cell; 2020 May; 78(3):423-433.e5. PubMed ID: 32220645 [TBL] [Abstract][Full Text] [Related]
7. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Yeom KH; Lee Y; Han J; Suh MR; Kim VN Nucleic Acids Res; 2006; 34(16):4622-9. PubMed ID: 16963499 [TBL] [Abstract][Full Text] [Related]
8. A central role for the primary microRNA stem in guiding the position and efficiency of Drosha processing of a viral pri-miRNA. Burke JM; Kelenis DP; Kincaid RP; Sullivan CS RNA; 2014 Jul; 20(7):1068-77. PubMed ID: 24854622 [TBL] [Abstract][Full Text] [Related]
9. Cloning, expression, and characterization of the zebrafish Dicer and Drosha enzymes. Li P; Tian Q; Hu M; Li W; Zhang X; Zeng Y Biochem Biophys Res Commun; 2019 Jun; 514(1):200-204. PubMed ID: 31029426 [TBL] [Abstract][Full Text] [Related]
10. The nuclear RNase III Drosha initiates microRNA processing. Lee Y; Ahn C; Han J; Choi H; Kim J; Yim J; Lee J; Provost P; Rådmark O; Kim S; Kim VN Nature; 2003 Sep; 425(6956):415-9. PubMed ID: 14508493 [TBL] [Abstract][Full Text] [Related]
11. Molecular Basis for the Single-Nucleotide Precision of Primary microRNA Processing. Kwon SC; Baek SC; Choi YG; Yang J; Lee YS; Woo JS; Kim VN Mol Cell; 2019 Feb; 73(3):505-518.e5. PubMed ID: 30554947 [TBL] [Abstract][Full Text] [Related]
12. SRSF3 recruits DROSHA to the basal junction of primary microRNAs. Kim K; Nguyen TD; Li S; Nguyen TA RNA; 2018 Jul; 24(7):892-898. PubMed ID: 29615481 [TBL] [Abstract][Full Text] [Related]
13. Human disease-associated single nucleotide polymorphism changes the orientation of DROSHA on pri-mir-146a. Le CT; Nguyen TL; Nguyen TD; Nguyen TA RNA; 2020 Dec; 26(12):1777-1786. PubMed ID: 32994184 [TBL] [Abstract][Full Text] [Related]
14. DGCR8 recognizes primary transcripts of microRNAs through highly cooperative binding and formation of higher-order structures. Faller M; Toso D; Matsunaga M; Atanasov I; Senturia R; Chen Y; Zhou ZH; Guo F RNA; 2010 Aug; 16(8):1570-83. PubMed ID: 20558544 [TBL] [Abstract][Full Text] [Related]
15. Processing of primary microRNAs by the Microprocessor complex. Denli AM; Tops BB; Plasterk RH; Ketting RF; Hannon GJ Nature; 2004 Nov; 432(7014):231-5. PubMed ID: 15531879 [TBL] [Abstract][Full Text] [Related]
16. Alternative splicing affects the subcellular localization of Drosha. Link S; Grund SE; Diederichs S Nucleic Acids Res; 2016 Jun; 44(11):5330-43. PubMed ID: 27185895 [TBL] [Abstract][Full Text] [Related]
17. The Drosha-DGCR8 complex in primary microRNA processing. Han J; Lee Y; Yeom KH; Kim YK; Jin H; Kim VN Genes Dev; 2004 Dec; 18(24):3016-27. PubMed ID: 15574589 [TBL] [Abstract][Full Text] [Related]
18. MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Gregory RI; Chendrimada TP; Shiekhattar R Methods Mol Biol; 2006; 342():33-47. PubMed ID: 16957365 [TBL] [Abstract][Full Text] [Related]
19. Extending the L1 region in canonical double-stranded RNA-binding domains impairs their functions. Zhang X; Li P; Zhong H; Yang F; Liu F; Yedid G; Zeng Y Acta Biochim Biophys Sin (Shanghai); 2021 Mar; 53(4):463-471. PubMed ID: 33751023 [TBL] [Abstract][Full Text] [Related]
20. Autoregulatory mechanisms controlling the Microprocessor. Triboulet R; Gregory RI Adv Exp Med Biol; 2010; 700():56-66. PubMed ID: 21627030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]