BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29109334)

  • 1. Comparison of Archaeal Communities in Mineral Soils at a Boreal Forest in Finland and a Cold-Temperate Forest in Japan.
    Isoda R; Hara S; Tahvanainen T; Hashidoko Y
    Microbes Environ; 2017 Dec; 32(4):390-393. PubMed ID: 29109334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ammonia oxidation-dependent growth of group I.1b Thaumarchaeota in acidic red soil microcosms.
    Wu Y; Conrad R
    FEMS Microbiol Ecol; 2014 Jul; 89(1):127-34. PubMed ID: 24724989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ammonia oxidation is not required for growth of Group 1.1c soil Thaumarchaeota.
    Weber EB; Lehtovirta-Morley LE; Prosser JI; Gubry-Rangin C
    FEMS Microbiol Ecol; 2015 Mar; 91(3):. PubMed ID: 25764563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Archaeal communities in boreal forest tree rhizospheres respond to changing soil temperatures.
    Bomberg M; Münster U; Pumpanen J; Ilvesniemi H; Heinonsalo J
    Microb Ecol; 2011 Jul; 62(1):205-17. PubMed ID: 21394607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota.
    Oton EV; Quince C; Nicol GW; Prosser JI; Gubry-Rangin C
    ISME J; 2016 Jan; 10(1):85-96. PubMed ID: 26140533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils.
    Masse J; Prescott CE; Renaut S; Terrat Y; Grayston SJ
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28213542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity of Archaea in Brazilian savanna soils.
    Catão E; Castro AP; Barreto CC; Krüger RH; Kyaw CM
    Arch Microbiol; 2013 Jul; 195(7):507-12. PubMed ID: 23515915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ericoid Roots and Mycospheres Govern Plant-Specific Bacterial Communities in Boreal Forest Humus.
    Timonen S; Sinkko H; Sun H; Sietiö OM; Rinta-Kanto JM; Kiheri H; Heinonsalo J
    Microb Ecol; 2017 May; 73(4):939-953. PubMed ID: 28025668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH dominates variation in tropical soil archaeal diversity and community structure.
    Tripathi BM; Kim M; Lai-Hoe A; Shukor NA; Rahim RA; Go R; Adams JM
    FEMS Microbiol Ecol; 2013 Nov; 86(2):303-11. PubMed ID: 23773164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of soil properties on archaeal diversity and distribution in the McMurdo Dry Valleys, Antarctica.
    Richter I; Herbold CW; Lee CK; McDonald IR; Barrett JE; Cary SC
    FEMS Microbiol Ecol; 2014 Aug; 89(2):347-59. PubMed ID: 24646164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria.
    Nicol GW; Leininger S; Schleper C; Prosser JI
    Environ Microbiol; 2008 Nov; 10(11):2966-78. PubMed ID: 18707610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogeography of soil Thaumarchaeota in relation to soil depth and land usage.
    Lu X; Seuradge BJ; Neufeld JD
    FEMS Microbiol Ecol; 2017 Feb; 93(2):. PubMed ID: 27940645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevational patterns in archaeal diversity on Mt. Fuji.
    Singh D; Takahashi K; Adams JM
    PLoS One; 2012; 7(9):e44494. PubMed ID: 22970233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Archaeal Community Changes Associated with Cultivation of Amazon Forest Soil with Oil Palm.
    Tupinambá DD; Cantão ME; Costa OY; Bergmann JC; Kruger RH; Kyaw CM; Barreto CC; Quirino BF
    Archaea; 2016; 2016():3762159. PubMed ID: 27006640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential response of archaeal groups to land use change in an acidic red soil.
    Shen JP; Cao P; Hu HW; He JZ
    Sci Total Environ; 2013 Sep; 461-462():742-9. PubMed ID: 23774250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of different land uses on the structure of archaeal communities in Amazonian anthrosols based on 16S rRNA and amoA genes.
    Taketani RG; Tsai SM
    Microb Ecol; 2010 May; 59(4):734-43. PubMed ID: 20204349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat.
    Lin X; Handley KM; Gilbert JA; Kostka JE
    ISME J; 2015 Dec; 9(12):2740-4. PubMed ID: 26000553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Archaeal communities in mangrove soil characterized by 16S rRNA gene clones.
    Yan B; Hong K; Yu ZN
    J Microbiol; 2006 Oct; 44(5):566-71. PubMed ID: 17082752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil available phosphorus content drives the spatial distribution of archaeal communities along elevation in acidic terrace paddy soils.
    Zhang Q; Li Y; Xing J; Brookes PC; Xu J
    Sci Total Environ; 2019 Mar; 658():723-731. PubMed ID: 30583167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Restoration of microbial ammonia oxidizers in air-dried forest soils upon wetting].
    Zhou X; Huang R; Song G; Pan X; Jia Z
    Wei Sheng Wu Xue Bao; 2014 Nov; 54(11):1311-22. PubMed ID: 25752138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.