These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29109375)

  • 1. Model-Based Localization and Tracking Using Bluetooth Low-Energy Beacons.
    Daniş FS; Cemgil AT
    Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29109375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracking a moving user in indoor environments using Bluetooth low energy beacons.
    Surian D; Kim V; Menon R; Dunn AG; Sintchenko V; Coiera E
    J Biomed Inform; 2019 Oct; 98():103288. PubMed ID: 31513890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Empirical Study of a Room-Level Localization System Based on Bluetooth Low Energy Beacons.
    García-Paterna PJ; Martínez-Sala AS; Sánchez-Aarnoutse JC
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced PDR-BLE Compensation Mechanism Based on HMM and AWCLA for Improving Indoor Localization.
    Jamil H; Qayyum F; Jamil F; Kim DH
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smartphone-Based Indoor Localization with Bluetooth Low Energy Beacons.
    Zhuang Y; Yang J; Li Y; Qi L; El-Sheimy N
    Sensors (Basel); 2016 Apr; 16(5):. PubMed ID: 27128917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized CNNs to Indoor Localization through BLE Sensors Using Improved PSO.
    Sun D; Wei E; Ma Z; Wu C; Xu S
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33808972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fusing Bluetooth Beacon Data with Wi-Fi Radiomaps for Improved Indoor Localization.
    Kanaris L; Kokkinis A; Liotta A; Stavrou S
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28394268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Practice of BLE RSSI Measurement for Indoor Positioning.
    Ramirez R; Huang CY; Liao CA; Lin PT; Lin HW; Liang SH
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Indoor Positioning Based on Bluetooth Low-Energy Beacons Adopting Graph Optimization.
    Zuo Z; Liu L; Zhang L; Fang Y
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Hybrid Method to Improve the BLE-Based Indoor Positioning in a Dense Bluetooth Environment.
    Huang K; He K; Du X
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30669629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the Implications of Varying Bluetooth Low Energy (BLE) Transmission Power Levels on Wireless Indoor Localization Accuracy and Precision.
    Qureshi UM; Umair Z; Hancke GP
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31349727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Position Tracking Techniques Using Multiple Receivers for Anti-Drone Systems.
    Shin JM; Kim YS; Ban TW; Choi S; Kang KM; Ryu JY
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining Multichannel RSSI and Vision with Artificial Neural Networks to Improve BLE Trilateration.
    Naghdi S; O'Keefe K
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Enhanced Indoor Positioning Technique Based on a Novel Received Signal Strength Indicator Distance Prediction and Correction Model.
    Nagah Amr M; El Attar HM; Abd El Azeem MH; El Badawy H
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33494417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous Indoor Pedestrian Localization and House Mapping Based on Inertial Measurement Unit and Bluetooth Low-Energy Beacon Data.
    Ceron JD; Kluge F; Küderle A; Eskofier BM; López DM
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32842566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate real time localization tracking in a clinical environment using Bluetooth Low Energy and deep learning.
    Iqbal Z; Luo D; Henry P; Kazemifar S; Rozario T; Yan Y; Westover K; Lu W; Nguyen D; Long T; Wang J; Choy H; Jiang S
    PLoS One; 2018; 13(10):e0205392. PubMed ID: 30307999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Empirical Study of the Transmission Power Setting for Bluetooth-Based Indoor Localization Mechanisms.
    Castillo-Cara M; Lovón-Melgarejo J; Bravo-Rocca G; Orozco-Barbosa L; García-Varea I
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28590413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design Space Exploration of a Multi-Model AI-Based Indoor Localization System.
    Kotrotsios K; Fanariotis A; Leligou HC; Orphanoudakis T
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simplified Indoor Localization Using Bluetooth Beacons and Received Signal Strength Fingerprinting with Smartwatch.
    Bouse L; King SA; Chu T
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BLE-Based Indoor Localization: Analysis of Some Solutions for Performance Improvement.
    Milano F; da Rocha H; Laracca M; Ferrigno L; Espírito Santo A; Salvado J; Paciello V
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.