BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 29109399)

  • 1. Competition between crystal and fibril formation in molecular mutations of amyloidogenic peptides.
    Reynolds NP; Adamcik J; Berryman JT; Handschin S; Zanjani AAH; Li W; Liu K; Zhang A; Mezzenga R
    Nat Commun; 2017 Nov; 8(1):1338. PubMed ID: 29109399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a molecular theory of early and late events in monomer to amyloid fibril formation.
    Straub JE; Thirumalai D
    Annu Rev Phys Chem; 2011; 62():437-63. PubMed ID: 21219143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amyloid assembly is dominated by misregistered kinetic traps on an unbiased energy landscape.
    Jia Z; Schmit JD; Chen J
    Proc Natl Acad Sci U S A; 2020 May; 117(19):10322-10328. PubMed ID: 32345723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic Strength Modulation of the Free Energy Landscape of Aβ40 Peptide Fibril Formation.
    Abelein A; Jarvet J; Barth A; Gräslund A; Danielsson J
    J Am Chem Soc; 2016 Jun; 138(21):6893-902. PubMed ID: 27171340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into Stabilizing Forces in Amyloid Fibrils of Differing Sizes from Polarizable Molecular Dynamics Simulations.
    Davidson DS; Brown AM; Lemkul JA
    J Mol Biol; 2018 Oct; 430(20):3819-3834. PubMed ID: 29782833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion.
    Mishra R; Sörgjerd K; Nyström S; Nordigården A; Yu YC; Hammarström P
    J Mol Biol; 2007 Feb; 366(3):1029-44. PubMed ID: 17196616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed atomic force microscopy reveals structural dynamics of amyloid β1-42 aggregates.
    Watanabe-Nakayama T; Ono K; Itami M; Takahashi R; Teplow DB; Yamada M
    Proc Natl Acad Sci U S A; 2016 May; 113(21):5835-40. PubMed ID: 27162352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Associative Memory, Water Mediated, Structure and Energy Model (AWSEM)-Amylometer: Predicting Amyloid Propensity and Fibril Topology Using an Optimized Folding Landscape Model.
    Chen M; Schafer NP; Zheng W; Wolynes PG
    ACS Chem Neurosci; 2018 May; 9(5):1027-1039. PubMed ID: 29241326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of Zn(II) binding as a key feature in the formation of amyloid fibrils by Aβ11-28.
    Alies B; Solari PL; Hureau C; Faller P
    Inorg Chem; 2012 Jan; 51(1):701-8. PubMed ID: 22148916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of fibrillation kinetics of two homologous proteins under identical solution condition.
    Chaudhary AP; Vispute NH; Shukla VK; Ahmad B
    Biochimie; 2017 Jan; 132():75-84. PubMed ID: 27825804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymorphism in disease-related apolipoprotein C-II amyloid fibrils: a structural model for rod-like fibrils.
    Zlatic CO; Mao Y; Todorova N; Mok YF; Howlett GJ; Yarovsky I; Gooley PR; Griffin MDW
    FEBS J; 2018 Aug; 285(15):2799-2812. PubMed ID: 29791776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a novel human islet amyloid polypeptide beta-sheet domain and factors influencing fibrillogenesis.
    Jaikaran ET; Higham CE; Serpell LC; Zurdo J; Gross M; Clark A; Fraser PE
    J Mol Biol; 2001 May; 308(3):515-25. PubMed ID: 11327784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation Studies of Amyloidogenic Polypeptides and Their Aggregates.
    Ilie IM; Caflisch A
    Chem Rev; 2019 Jun; 119(12):6956-6993. PubMed ID: 30973229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryo-EM reveals the steric zipper structure of a light chain-derived amyloid fibril.
    Schmidt A; Annamalai K; Schmidt M; Grigorieff N; Fändrich M
    Proc Natl Acad Sci U S A; 2016 May; 113(22):6200-5. PubMed ID: 27185936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-state NMR as a method to reveal structure and membrane-interaction of amyloidogenic proteins and peptides.
    Naito A; Kawamura I
    Biochim Biophys Acta; 2007 Aug; 1768(8):1900-12. PubMed ID: 17524351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Anomalous Kinetics of Amyloidogenesis Suggest a Competition between Oligomers and Fibrils].
    Finkelstein AV; Dovidchenko NV; Galzitskaya OV
    Mol Biol (Mosk); 2018; 52(1):73-81. PubMed ID: 29512638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elongation in a beta-structure promotes amyloid-like fibril formation of human lysozyme.
    Goda S; Takano K; Yamagata Y; Maki S; Namba K; Yutani K
    J Biochem; 2002 Oct; 132(4):655-61. PubMed ID: 12359083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of histidines in amyloid β fibril assembly.
    Brännström K; Islam T; Sandblad L; Olofsson A
    FEBS Lett; 2017 Apr; 591(8):1167-1175. PubMed ID: 28267202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Kinetics of Amyloid Fibril Formation by
    Balobanov V; Chertkova R; Egorova A; Dolgikh D; Bychkova V; Kirpichnikov M
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32033353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.