These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 29109427)
1. The Dependence of CNT Aerogel Synthesis on Sulfur-driven Catalyst Nucleation Processes and a Critical Catalyst Particle Mass Concentration. Hoecker C; Smail F; Pick M; Weller L; Boies AM Sci Rep; 2017 Nov; 7(1):14519. PubMed ID: 29109427 [TBL] [Abstract][Full Text] [Related]
2. The Synergistic Effect of a Bimetallic Catalyst for the Synthesis of Carbon Nanotube Aerogels and their Predominant Chirality. Moon SY; Kim WS Chemistry; 2019 Oct; 25(59):13635-13639. PubMed ID: 31407390 [TBL] [Abstract][Full Text] [Related]
3. CFD-aerosol modeling of the effects of wall composition and inlet conditions on carbon nanotube catalyst particle activity. Brown DP; Nasibulin AG; Kauppinen EI J Nanosci Nanotechnol; 2008 Aug; 8(8):3803-19. PubMed ID: 19049135 [TBL] [Abstract][Full Text] [Related]
4. Decoupled control of carbon nanotube forest density and diameter by continuous-feed convective assembly of catalyst particles. Polsen ES; Bedewy M; Hart AJ Small; 2013 Aug; 9(15):2564-75. PubMed ID: 23418098 [TBL] [Abstract][Full Text] [Related]
5. Carbon nanotube synthesis and spinning as macroscopic fibers assisted by the ceramic reactor tube. Rodiles X; Reguero V; Vila M; Alemán B; Arévalo L; Fresno F; O'Shea VAP; Vilatela JJ Sci Rep; 2019 Jun; 9(1):9239. PubMed ID: 31239459 [TBL] [Abstract][Full Text] [Related]
6. Isolating the Roles of Hydrogen Exposure and Trace Carbon Contamination on the Formation of Active Catalyst Populations for Carbon Nanotube Growth. Carpena-Núñez J; Boscoboinik JA; Saber S; Rao R; Zhong JQ; Maschmann MR; Kidambi PR; Dee NT; Zakharov DN; Hart AJ; Stach EA; Maruyama B ACS Nano; 2019 Aug; 13(8):8736-8748. PubMed ID: 31329425 [TBL] [Abstract][Full Text] [Related]
7. High-speed in situ X-ray scattering of carbon nanotube film nucleation and self-organization. Meshot ER; Verploegen E; Bedewy M; Tawfick S; Woll AR; Green KS; Hromalik M; Koerner LJ; Philipp HT; Tate MW; Gruner SM; Hart AJ ACS Nano; 2012 Jun; 6(6):5091-101. PubMed ID: 22571676 [TBL] [Abstract][Full Text] [Related]
8. Growth and Mechanics of Heterogeneous, 3D Carbon Nanotube Forest Microstructures Formed by Sequential Selective-Area Synthesis. Hines R; Hajilounezhad T; Love-Baker C; Koerner G; Maschmann MR ACS Appl Mater Interfaces; 2020 Apr; 12(15):17893-17900. PubMed ID: 32208632 [TBL] [Abstract][Full Text] [Related]
9. High throughput production of single-wall carbon nanotube fibres independent of sulfur-source. Kaniyoor A; Bulmer J; Gspann T; Mizen J; Ryley J; Kiley P; Terrones J; Miranda-Reyes C; Divitini G; Sparkes M; O'Neill B; Windle A; Elliott JA Nanoscale; 2019 Oct; 11(39):18483-18495. PubMed ID: 31577319 [TBL] [Abstract][Full Text] [Related]
10. Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes. Steiner SA; Baumann TF; Bayer BC; Blume R; Worsley MA; MoberlyChan WJ; Shaw EL; Schlögl R; Hart AJ; Hofmann S; Wardle BL J Am Chem Soc; 2009 Sep; 131(34):12144-54. PubMed ID: 19663436 [TBL] [Abstract][Full Text] [Related]
12. The promoter role of sulfur in carbon nanotube growth. Orbán B; Höltzl T Dalton Trans; 2022 Jun; 51(24):9256-9264. PubMed ID: 35667372 [TBL] [Abstract][Full Text] [Related]
13. Formation of Thermally Stable, High-Areal-Density, and Small-Diameter Catalyst Nanoparticles via Intermittent Sputtering Deposition for the High-Density Growth of Carbon Nanotubes. Koji H; Kusumoto Y; Hatta A; Furuta H Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159710 [TBL] [Abstract][Full Text] [Related]
14. Spinning of carbon nanotube fibres using the floating catalyst high temperature route: purity issues and the critical role of sulphur. Gspann TS; Smail FR; Windle AH Faraday Discuss; 2014; 173():47-65. PubMed ID: 25341017 [TBL] [Abstract][Full Text] [Related]
15. Real-Time Imaging of Self-Organization and Mechanical Competition in Carbon Nanotube Forest Growth. Balakrishnan V; Bedewy M; Meshot ER; Pattinson SW; Polsen ES; Laye F; Zakharov DN; Stach EA; Hart AJ ACS Nano; 2016 Dec; 10(12):11496-11504. PubMed ID: 27959511 [TBL] [Abstract][Full Text] [Related]
16. Effects of Catalyst Pretreatment on Carbon Nanotube Synthesis from Methane Using Thin Stainless-Steel Foil as Catalyst by Chemical Vapor Deposition Method. Huynh TM; Nguyen S; Nguyen NTK; Nguyen HM; Do NUP; Nguyen DC; Nguyen LH; Nguyen CV Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33379133 [TBL] [Abstract][Full Text] [Related]
17. Gaseous product mixture from Fischer-Tropsch synthesis as an efficient carbon feedstock for low temperature CVD growth of carbon nanotube carpets. Almkhelfe H; Carpena-Núñez J; Back TC; Amama PB Nanoscale; 2016 Jul; 8(27):13476-87. PubMed ID: 27353432 [TBL] [Abstract][Full Text] [Related]
19. Mechanical coupling limits the density and quality of self-organized carbon nanotube growth. Bedewy M; Hart AJ Nanoscale; 2013 Apr; 5(7):2928-37. PubMed ID: 23455411 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of Vertical Carbon Nanotube Interconnect Structures Using CMOS-Compatible Catalysts. Ma Z; Zhou S; Zhou C; Xiao Y; Li S; Chan M Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 32992981 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]