These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Growth, new growth, and amplification of carbon nanotubes as a function of catalyst composition. Crouse CA; Maruyama B; Colorado R; Back T; Barron AR J Am Chem Soc; 2008 Jun; 130(25):7946-54. PubMed ID: 18507464 [TBL] [Abstract][Full Text] [Related]
23. Recent advances in carbon nanotube sponge-based sorption technologies for mitigation of marine oil spills. Kukkar D; Rani A; Kumar V; Younis SA; Zhang M; Lee SS; Tsang DCW; Kim KH J Colloid Interface Sci; 2020 Jun; 570():411-422. PubMed ID: 32199191 [TBL] [Abstract][Full Text] [Related]
24. Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition. Jodin L; Dupuis AC; Rouvière E; Reiss P J Phys Chem B; 2006 Apr; 110(14):7328-33. PubMed ID: 16599506 [TBL] [Abstract][Full Text] [Related]
25. High Purity Single Wall Carbon Nanotube by Oxygen-Containing Functional Group of Ferrocene-Derived Catalyst Precursor by Floating Catalyst Chemical Vapor Deposition. Moon SY; Jeon SY; Lee SH; Lee A; Kim SM Nanomaterials (Basel); 2022 Mar; 12(5):. PubMed ID: 35269351 [TBL] [Abstract][Full Text] [Related]
26. Gas-Phase Dynamics of Bundle Formation from High-Aspect-Ratio Carbon Nanotubes. Qiao R; Qiu X; Boies A Langmuir; 2024 Oct; 40(41):21460-21475. PubMed ID: 39348526 [TBL] [Abstract][Full Text] [Related]
27. Carbon nanotube-bonded graphene hybrid aerogels and their application to water purification. Lee B; Lee S; Lee M; Jeong DH; Baek Y; Yoon J; Kim YH Nanoscale; 2015 Apr; 7(15):6782-9. PubMed ID: 25807182 [TBL] [Abstract][Full Text] [Related]
28. Bio-inspired and assembled fungal hyphae/carbon nanotubes aerogel for water-oil separation. Li Y; Zou G; Zhang X; Yang S; Wang Z; Chen T; Zhang L; Lei J; Zhu W; Duan T Nanotechnology; 2019 Jul; 30(27):275601. PubMed ID: 30822755 [TBL] [Abstract][Full Text] [Related]
29. Abrasion as a catalyst deposition technique for carbon nanotube growth. Alvarez NT; Pint CL; Hauge RH; Tour JM J Am Chem Soc; 2009 Oct; 131(41):15041-8. PubMed ID: 19764728 [TBL] [Abstract][Full Text] [Related]
30. A critical role of catalyst morphology in low-temperature synthesis of carbon nanotube-transition metal oxide nanocomposite. Jin X; Lim J; Ha Y; Kwon NH; Shin H; Kim IY; Lee NS; Kim MH; Kim H; Hwang SJ Nanoscale; 2017 Aug; 9(34):12416-12424. PubMed ID: 28809428 [TBL] [Abstract][Full Text] [Related]
31. Defect-Induced Adsorption Switching (p- to n- Type) in Conducting Bare Carbon Nanotube Film for the Development of Highly Sensitive and Flexible Chemiresistive-Based Methanol and NO Prakash J; Rao PT; Rohilla R; Nechiyil D; Kaur M; Ganapathi KS; Debnath AK; Kaushal A; Bahadur J; Dasgupta K ACS Omega; 2023 Feb; 8(7):6708-6719. PubMed ID: 36844608 [TBL] [Abstract][Full Text] [Related]
32. Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst. Hart AJ; Slocum AH J Phys Chem B; 2006 Apr; 110(16):8250-7. PubMed ID: 16623503 [TBL] [Abstract][Full Text] [Related]
33. Impact of Silicon Nanocrystal Oxidation on the Nonmetallic Growth of Carbon Nanotubes. Rocks C; Mitra S; Macias-Montero M; Maguire P; Svrcek V; Levchenko I; Ostrikov K; Mariotti D ACS Appl Mater Interfaces; 2016 Jul; 8(29):19012-23. PubMed ID: 27362537 [TBL] [Abstract][Full Text] [Related]
34. Novel growth method of carbon nanotubes using catalyst-support layer developed by alumina grit blasting. Watanabe H; Ishii J; Ota K Nanotechnology; 2016 Aug; 27(33):335605. PubMed ID: 27389659 [TBL] [Abstract][Full Text] [Related]
35. Synthesis and Properties of Silica and Alginate Hybrid Aerogel Particles with Embedded Carbon Nanotubes (CNTs) for Selective Sorption. Menshutina N; Tsygankov P; Ivanov S Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30586902 [TBL] [Abstract][Full Text] [Related]
36. Floating Fe Catalyst Formation and Effects of Hydrogen Environment in the Growth of Carbon Nanotubes. Lei J; Bets KV; Penev ES; Yakobson BI J Phys Chem Lett; 2023 May; 14(18):4266-4272. PubMed ID: 37126735 [TBL] [Abstract][Full Text] [Related]
37. Wet catalyst-support films for production of vertically aligned carbon nanotubes. Alvarez NT; Hamilton CE; Pint CL; Orbaek A; Yao J; Frosinini AL; Barron AR; Tour JM; Hauge RH ACS Appl Mater Interfaces; 2010 Jul; 2(7):1851-6. PubMed ID: 20540507 [TBL] [Abstract][Full Text] [Related]
38. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes. Shi W; Li J; Polsen ES; Oliver CR; Zhao Y; Meshot ER; Barclay M; Fairbrother DH; Hart AJ; Plata DL Nanoscale; 2017 Apr; 9(16):5222-5233. PubMed ID: 28397885 [TBL] [Abstract][Full Text] [Related]
39. Molecular dynamics simulation of carbon nanotube growth under a tensile strain. Yamanaka A; Jono R; Tejima S; Fujita JI Sci Rep; 2024 Mar; 14(1):5625. PubMed ID: 38454043 [TBL] [Abstract][Full Text] [Related]
40. Agglomeration Dynamics of 1D Materials: Gas-Phase Collision Rates of Nanotubes and Nanorods. Boies AM; Hoecker C; Bhalerao A; Kateris N; de La Verpilliere J; Graves B; Smail F Small; 2019 Jul; 15(27):e1900520. PubMed ID: 31120182 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]