These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29109464)

  • 1. New Insights into PI3K Inhibitor Design using X-ray Structures of PI3Kα Complexed with a Potent Lead Compound.
    Yang X; Zhang X; Huang M; Song K; Li X; Huang M; Meng L; Zhang J
    Sci Rep; 2017 Nov; 7(1):14572. PubMed ID: 29109464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of an isolated p110α subunit of PI3Kα permits crystallization and provides a platform for structure-based drug design.
    Chen P; Deng YL; Bergqvist S; Falk MD; Liu W; Timofeevski S; Brooun A
    Protein Sci; 2014 Oct; 23(10):1332-40. PubMed ID: 25043846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, Synthesis, and Biological Evaluation of Substituted Pyrimidines as Potential Phosphatidylinositol 3-Kinase (PI3K) Inhibitors.
    Zhang JQ; Luo YJ; Xiong YS; Yu Y; Tu ZC; Long ZJ; Lai XJ; Chen HX; Luo Y; Weng J; Lu G
    J Med Chem; 2016 Aug; 59(15):7268-74. PubMed ID: 27427973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of new aminopyrimidine-based phosphoinositide 3-kinase beta (PI3Kβ) inhibitors with selectivity over PI3Kα.
    Kim J; Hong S; Hong S
    Bioorg Med Chem Lett; 2011 Dec; 21(23):6977-81. PubMed ID: 22030027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, synthesis and biological evaluation of novel condensed pyrrolo[1,2-c]pyrimidines featuring morpholine moiety as PI3Kα inhibitors.
    Ibrahim MA; Abou-Seri SM; Hanna MM; Abdalla MM; El Sayed NA
    Eur J Med Chem; 2015 Jun; 99():1-13. PubMed ID: 26037808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design of phosphoinositide 3-kinase α inhibitors that exhibit selectivity over the phosphoinositide 3-kinase β isoform.
    Heffron TP; Wei B; Olivero A; Staben ST; Tsui V; Do S; Dotson J; Folkes AJ; Goldsmith P; Goldsmith R; Gunzner J; Lesnick J; Lewis C; Mathieu S; Nonomiya J; Shuttleworth S; Sutherlin DP; Wan NC; Wang S; Wiesmann C; Zhu BY
    J Med Chem; 2011 Nov; 54(22):7815-33. PubMed ID: 21985639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological characterization of SN32976, a selective inhibitor of PI3K and mTOR with preferential activity to PI3Kα, in comparison to established pan PI3K inhibitors.
    Rewcastle GW; Kolekar S; Buchanan CM; Gamage SA; Giddens AC; Tsang KY; Kendall JD; Singh R; Lee WJ; Smith GC; Han W; Matthews DJ; Denny WA; Shepherd PR; Jamieson SMF
    Oncotarget; 2017 Jul; 8(29):47725-47740. PubMed ID: 28537878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining properties of different classes of PI3Kα inhibitors to understand the molecular features that confer selectivity.
    Gong GQ; Kendall JD; Dickson JMJ; Rewcastle GW; Buchanan CM; Denny WA; Shepherd PR; Flanagan JU
    Biochem J; 2017 Jun; 474(13):2261-2276. PubMed ID: 28526744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DW09849, a selective phosphatidylinositol 3-kinase (PI3K) inhibitor, prevents PI3K signaling and preferentially inhibits proliferation of cells containing the oncogenic mutation p110α (H1047R).
    Liu JL; Gao GR; Zhang X; Cao SF; Guo CL; Wang X; Tong LJ; Ding J; Duan WH; Meng LH
    J Pharmacol Exp Ther; 2014 Mar; 348(3):432-41. PubMed ID: 24361696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rationally Designed PI3Kα Mutants to Mimic ATR and Their Use to Understand Binding Specificity of ATR Inhibitors.
    Lu Y; Knapp M; Crawford K; Warne R; Elling R; Yan K; Doyle M; Pardee G; Zhang L; Ma S; Mamo M; Ornelas E; Pan Y; Bussiere D; Jansen J; Zaror I; Lai A; Barsanti P; Sim J
    J Mol Biol; 2017 Jun; 429(11):1684-1704. PubMed ID: 28433539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, synthesis and SAR of new-di-substituted pyridopyrimidines as ATP-competitive dual PI3Kα/mTOR inhibitors.
    Al-Ashmawy AAK; Ragab FA; Elokely KM; Anwar MM; Perez-Leal O; Rico MC; Gordon J; Bichenkov E; Mateo G; Kassem EMM; Hegazy GH; Abou-Gharbia M; Childers W
    Bioorg Med Chem Lett; 2017 Jul; 27(14):3117-3122. PubMed ID: 28571824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, Synthesis and Biological Evaluation of Novel Urea and Thiourea Bearing thieno[3,2-d]-pyrimidines as PI3 Kinase Inhibitors.
    Bodige S; Ravula P; Gulipalli KC; Endoori S; Chandra JNNS; Cherukumalli PKR; Vanaja G R ; Seelam N
    Anticancer Agents Med Chem; 2018; 18(6):891-902. PubMed ID: 29424321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of phosphatidylinositol 3-kinase (PI3K) inhibitory analogues of the sponge meroterpenoid liphagal.
    Pereira AR; Strangman WK; Marion F; Feldberg L; Roll D; Mallon R; Hollander I; Andersen RJ
    J Med Chem; 2010 Dec; 53(24):8523-33. PubMed ID: 21121631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations.
    Huang CH; Mandelker D; Schmidt-Kittler O; Samuels Y; Velculescu VE; Kinzler KW; Vogelstein B; Gabelli SB; Amzel LM
    Science; 2007 Dec; 318(5857):1744-8. PubMed ID: 18079394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of a potent, selective, and orally available class I phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) kinase inhibitor (GDC-0980) for the treatment of cancer.
    Sutherlin DP; Bao L; Berry M; Castanedo G; Chuckowree I; Dotson J; Folks A; Friedman L; Goldsmith R; Gunzner J; Heffron T; Lesnick J; Lewis C; Mathieu S; Murray J; Nonomiya J; Pang J; Pegg N; Prior WW; Rouge L; Salphati L; Sampath D; Tian Q; Tsui V; Wan NC; Wang S; Wei B; Wiesmann C; Wu P; Zhu BY; Olivero A
    J Med Chem; 2011 Nov; 54(21):7579-87. PubMed ID: 21981714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryo-EM structures of PI3Kα reveal conformational changes during inhibition and activation.
    Liu X; Yang S; Hart JR; Xu Y; Zou X; Zhang H; Zhou Q; Xia T; Zhang Y; Yang D; Wang MW; Vogt PK
    Proc Natl Acad Sci U S A; 2021 Nov; 118(45):. PubMed ID: 34725156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and synthesis of a novel pyrrolidinyl pyrido pyrimidinone derivative as a potent inhibitor of PI3Kα and mTOR.
    Le PT; Cheng H; Ninkovic S; Plewe M; Huang X; Wang H; Bagrodia S; Sun S; Knighton DR; LaFleur Rogers CM; Pannifer A; Greasley S; Dalvie D; Zhang E
    Bioorg Med Chem Lett; 2012 Aug; 22(15):5098-103. PubMed ID: 22749419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of molecular recognition of phosphoinositide-3-kinase α inhibitor through molecular dynamics simulation.
    Li Y; Zhang J; He D; Liang Q; Wang Y
    J Mol Model; 2012 May; 18(5):1907-16. PubMed ID: 21870199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of a potent and isoform-selective targeted covalent inhibitor of the lipid kinase PI3Kα.
    Nacht M; Qiao L; Sheets MP; St Martin T; Labenski M; Mazdiyasni H; Karp R; Zhu Z; Chaturvedi P; Bhavsar D; Niu D; Westlin W; Petter RC; Medikonda AP; Singh J
    J Med Chem; 2013 Feb; 56(3):712-21. PubMed ID: 23360348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of allosteric binding sites for PI3Kα oncogenic mutant specific inhibitor design.
    Miller MS; Maheshwari S; McRobb FM; Kinzler KW; Amzel LM; Vogelstein B; Gabelli SB
    Bioorg Med Chem; 2017 Feb; 25(4):1481-1486. PubMed ID: 28129991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.