These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 29109468)

  • 1. A statistical estimator for determining the limits of contemporary and historic phenology.
    Pearse WD; Davis CC; Inouye DW; Primack RB; Davies TJ
    Nat Ecol Evol; 2017 Dec; 1(12):1876-1882. PubMed ID: 29109468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Citizen Science: linking the recent rapid advances of plant flowering in Canada with climate variability.
    Gonsamo A; Chen JM; Wu C
    Sci Rep; 2013; 3():2239. PubMed ID: 23867863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species' phenological cueing mechanisms.
    Davis CC; Willis CG; Connolly B; Kelly C; Ellison AM
    Am J Bot; 2015 Oct; 102(10):1599-609. PubMed ID: 26451038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming.
    Marchin RM; Salk CF; Hoffmann WA; Dunn RR
    Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of herbarium and citizen science phenology datasets for detecting response of flowering time to climate change in Denmark.
    Iwanycki Ahlstrand N; Primack RB; Tøttrup AP
    Int J Biometeorol; 2022 May; 66(5):849-862. PubMed ID: 35235036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent shifts in phenology contribute to the success of exotic species with climate change.
    Wolkovich EM; Davies TJ; Schaefer H; Cleland EE; Cook BI; Travers SE; Willis CG; Davis CC
    Am J Bot; 2013 Jul; 100(7):1407-21. PubMed ID: 23797366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Herbarium specimens, photographs, and field observations show Philadelphia area plants are responding to climate change.
    Panchen ZA; Primack RB; Anisko T; Lyons RE
    Am J Bot; 2012 Apr; 99(4):751-6. PubMed ID: 22447982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.
    Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH
    Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yearly fluctuations of flower landscape in a Mediterranean scrubland: Consequences for floral resource availability.
    Flo V; Bosch J; Arnan X; Primante C; Martín González AM; Barril-Graells H; Rodrigo A
    PLoS One; 2018; 13(1):e0191268. PubMed ID: 29346453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic conservatism and climate factors shape flowering phenology in alpine meadows.
    Li L; Li Z; Cadotte MW; Jia P; Chen G; Jin LS; Du G
    Oecologia; 2016 Oct; 182(2):419-28. PubMed ID: 27351544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower plasticity exhibited by high- versus mid-elevation species in their phenological responses to manipulated temperature and drought.
    Gugger S; Kesselring H; Stöcklin J; Hamann E
    Ann Bot; 2015 Nov; 116(6):953-62. PubMed ID: 26424784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limited alpine climatic warming and modeled phenology advancement for three alpine species in the Northeast United States.
    Kimball KD; Davis ML; Weihrauch DM; Murray GL; Rancourt K
    Am J Bot; 2014 Sep; 101(9):1437-46. PubMed ID: 25253704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenological change in a spring ephemeral: implications for pollination and plant reproduction.
    Gezon ZJ; Inouye DW; Irwin RE
    Glob Chang Biol; 2016 May; 22(5):1779-93. PubMed ID: 26833694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid evolution of phenology during range expansion with recent climate change.
    Lustenhouwer N; Wilschut RA; Williams JL; van der Putten WH; Levine JM
    Glob Chang Biol; 2018 Feb; 24(2):e534-e544. PubMed ID: 29044944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Range-Expanding Shrub Species Alters Plant Phenological Response to Experimental Warming.
    Kopp CW; Cleland EE
    PLoS One; 2015; 10(9):e0139029. PubMed ID: 26402617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flowering and biomass allocation in U.S. Atlantic coast Spartina alterniflora.
    Crosby SC; Ivens-Duran M; Bertness MD; Davey E; Deegan LA; Leslie HM
    Am J Bot; 2015 May; 102(5):669-76. PubMed ID: 26022481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenology of flowering and starch accumulation in grape (Vitis vinifera L.) cuttings and vines.
    Lebon G; Duchêne E; Brun O; Clément C
    Ann Bot; 2005 May; 95(6):943-8. PubMed ID: 15749750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forecasting phenology: from species variability to community patterns.
    Diez JM; Ibáñez I; Miller-Rushing AJ; Mazer SJ; Crimmins TM; Crimmins MA; Bertelsen CD; Inouye DW
    Ecol Lett; 2012 Jun; 15(6):545-53. PubMed ID: 22433120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergence of reproductive phenology under climate warming.
    Sherry RA; Zhou X; Gu S; Arnone JA; Schimel DS; Verburg PS; Wallace LL; Luo Y
    Proc Natl Acad Sci U S A; 2007 Jan; 104(1):198-202. PubMed ID: 17182748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flowering date of taxonomic families predicts phenological sensitivity to temperature: Implications for forecasting the effects of climate change on unstudied taxa.
    Mazer SJ; Travers SE; Cook BI; Davies TJ; Bolmgren K; Kraft NJ; Salamin N; Inouye DW
    Am J Bot; 2013 Jul; 100(7):1381-97. PubMed ID: 23752756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.