These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29109475)

  • 21. Large area compatible broadband superabsorber surfaces in the VIS-NIR spectrum utilizing metal-insulator-metal stack and plasmonic nanoparticles.
    Dereshgi SA; Okyay AK
    Opt Express; 2016 Aug; 24(16):17644-53. PubMed ID: 27505733
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
    Lei L; Li S; Huang H; Tao K; Xu P
    Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosensing with the singular phase of an ultrathin metal-dielectric nanophotonic cavity.
    Sreekanth KV; Sreejith S; Han S; Mishra A; Chen X; Sun H; Lim CT; Singh R
    Nat Commun; 2018 Jan; 9(1):369. PubMed ID: 29371614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultra-wideband perfect reflection and tunneling by all-dielectric metamaterials.
    Qiu J; Liu X; Liang Z; Zhu J
    Opt Lett; 2021 Feb; 46(4):849-852. PubMed ID: 33577527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Angle-Insensitive Ultrathin Broadband Visible Absorber Based on Dielectric-Semiconductor-Lossy Metal Film Stacks.
    Ma Y; Hu J; Li W; Yang Z
    Nanomaterials (Basel); 2023 Oct; 13(19):. PubMed ID: 37836367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bidirectional band-switchable nano-film absorber from narrowband to broadband.
    Wang F; Gao H; Peng W; Li R; Chu S; Yu L; Wang Q
    Opt Express; 2021 Feb; 29(4):5110-5120. PubMed ID: 33726052
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultra-thin broadband nanostructured insulator-metal-insulator-metal plasmonic light absorber.
    Hubarevich A; Kukhta A; Demir HV; Sun X; Wang H
    Opt Express; 2015 Apr; 23(8):9753-61. PubMed ID: 25969014
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region.
    Wu D; Liu C; Liu Y; Yu L; Yu Z; Chen L; Ma R; Ye H
    Opt Lett; 2017 Feb; 42(3):450-453. PubMed ID: 28146499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultra-broadband metamaterial absorber based on cross-shaped TiN resonators.
    Mehrabi S; Rezaei MH; Zarifkar A
    J Opt Soc Am A Opt Image Sci Vis; 2020 Apr; 37(4):697-704. PubMed ID: 32400557
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared.
    Gao H; Peng W; Chu S; Cui W; Liu Z; Yu L; Jing Z
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30545120
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Broadband asymmetric light transmission through tapered metallic gratings at visible frequencies.
    Tang B; Li Z; Liu Z; Callewaert F; Aydin K
    Sci Rep; 2016 Dec; 6():39166. PubMed ID: 27958369
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Narrow-band and high-contrast asymmetric transmission based on metal-metal-metal asymmetric gratings.
    Ba C; Huang L; Liu W; Li S; Ling Y; Li H
    Opt Express; 2019 Sep; 27(18):25107-25118. PubMed ID: 31510389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and analysis of broadband high-efficiency pulse compression gratings.
    Wang J; Jin Y; Ma J; Sun T; Jing X
    Appl Opt; 2010 Jun; 49(16):2969-78. PubMed ID: 20517364
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-absorption optical stack for aluminum kinetic inductance detectors.
    Mai Z; Dai X; Chen Y; Shi Z; Wang H; Pan C; Liu X; Wang Z; Guo W; Wang Y
    Appl Opt; 2023 Jul; 62(19):5294-5300. PubMed ID: 37707234
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High transparent conductive Ga-doped ZnO-based multilayer thin films with embedded ultrathin TiN layer deposited in oxygen-containing atmosphere.
    Liu Y; Yu H; Zeng Q; Ruan Q
    Opt Lett; 2023 Dec; 48(23):6296-6299. PubMed ID: 38039251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A difference in using atomic layer deposition or physical vapour deposition TiN as electrode material in metal-insulator-metal and metal-insulator-silicon capacitors.
    Groenland AW; Wolters RA; Kovalgin AY; Schmitz J
    J Nanosci Nanotechnol; 2011 Sep; 11(9):8368-73. PubMed ID: 22097586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robust Laminated Anode with an Ultrathin Titanium Nitride Layer for High-Efficiency Top-Emitting Organic Light-Emitting Diodes.
    Cai JH; Tian QS; Zhu XZ; Qu ZH; He W; Zhou DY; Liao LS
    Molecules; 2022 Sep; 27(17):. PubMed ID: 36080489
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultra-Broadband, Polarization-Irrelevant Near-Perfect Absorber Based on Composite Structure.
    Meng Y; Wu J; Liu S; Li Y; Hu B; Jin S
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208391
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultra-broadband light trapping using nanotextured decoupled graphene multilayers.
    Anguita JV; Ahmad M; Haq S; Allam J; Silva SR
    Sci Adv; 2016 Feb; 2(2):e1501238. PubMed ID: 26933686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultra-broadband metamaterial absorber from ultraviolet to long-wave infrared based on CMOS-compatible materials.
    Yue S; Hou M; Wang R; Guo H; Hou Y; Li M; Zhang Z; Wang Y; Zhang Z
    Opt Express; 2020 Oct; 28(21):31844-31861. PubMed ID: 33115149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.