These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29109475)

  • 41. Ultra-broadband metamaterial absorber from ultraviolet to long-wave infrared based on CMOS-compatible materials.
    Yue S; Hou M; Wang R; Guo H; Hou Y; Li M; Zhang Z; Wang Y; Zhang Z
    Opt Express; 2020 Oct; 28(21):31844-31861. PubMed ID: 33115149
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exploring the Absorption Spectra of an Ultra-Wideband Metamaterial Absorber in the Visible and Near-Infrared Regions.
    Tharwat MM; Alsulami AR; Mahros AM
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295229
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultra-Narrow Band Mid-Infrared Perfect Absorber Based on Hybrid Dielectric Metasurface.
    Chen S; Chen Z; Liu J; Cheng J; Zhou Y; Xiao L; Chen K
    Nanomaterials (Basel); 2019 Sep; 9(10):. PubMed ID: 31547054
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-absorption grating-insulator-metal structures.
    Chen X; He D; Wu J
    Appl Opt; 2021 Aug; 60(24):7480-7484. PubMed ID: 34613037
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polarization-selective ultra-broadband super absorber.
    Zhong YK; Fu SM; Huang W; Rung D; Huang JY; Parashar P; Lin A
    Opt Express; 2017 Feb; 25(4):A124-A133. PubMed ID: 28241515
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ultra-broadband Tunable Resonant Light Trapping in a Two-dimensional Randomly Microstructured Plasmonic-photonic Absorber.
    Liu Z; Liu L; Lu H; Zhan P; Du W; Wan M; Wang Z
    Sci Rep; 2017 Mar; 7():43803. PubMed ID: 28256599
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lithography-Free Planar Band-Pass Reflective Color Filter Using A Series Connection of Cavities.
    Ghobadi A; Hajian H; Soydan MC; Butun B; Ozbay E
    Sci Rep; 2019 Jan; 9(1):290. PubMed ID: 30670767
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design of multilayer planar film structures for near-perfect absorption in the visible to near-infrared.
    Cai H; Wang M; Wu Z; Wang X; Liu J
    Opt Express; 2022 Sep; 30(20):35219-35231. PubMed ID: 36258478
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An Infrared Ultra-Broadband Absorber Based on MIM Structure.
    Li M; Wang G; Gao Y; Gao Y
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234605
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanisms of perfect absorption in nano-composite systems.
    Mader S; Martin OJF
    Opt Express; 2018 Oct; 26(21):27089-27100. PubMed ID: 30469783
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Highly efficient unidirectional forward scattering induced by resonant interference in a metal-dielectric heterodimer.
    Sun S; Wang D; Feng Z; Tan W
    Nanoscale; 2020 Nov; 12(43):22289-22297. PubMed ID: 33146190
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Strongly enhanced sensitivities of CMOS compatible plasmonic titanium nitride nanohole arrays for refractive index sensing under oblique incidence.
    Han W; Reiter S; Schlipf J; Mai C; Spirito D; Jose J; Wenger C; Fischer IA
    Opt Express; 2023 May; 31(11):17389-17407. PubMed ID: 37381475
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Broadband Terahertz Near-Perfect Absorbers.
    Cheng X; Huang R; Xu J; Xu X
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33352-33360. PubMed ID: 32526137
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polarization-independent almost-perfect absorber controlled from narrowband to broadband.
    Chen J; Jin Y; Chen P; Shan Y; Xu J; Kong F; Shao J
    Opt Express; 2017 Jun; 25(12):13916-13922. PubMed ID: 28788834
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A fully functionalized metamaterial perfect absorber with simple design and implementation.
    Fu SM; Zhong YK; Tu MH; Chen BR; Lin A
    Sci Rep; 2016 Oct; 6():36244. PubMed ID: 27782181
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Broadband infrared plasmonic metamaterial absorber with multipronged absorption mechanisms.
    Fann CH; Zhang J; ElKabbash M; Donaldson WR; Michael Campbell E; Guo C
    Opt Express; 2019 Sep; 27(20):27917-27926. PubMed ID: 31684552
    [TBL] [Abstract][Full Text] [Related]  

  • 57. One-dimensional terahertz dielectric gradient metasurface for broadband spoof surface plasmon polaritons couplers.
    Li XJ; Cheng G; Yan DX; Hou XM; Qiu GH; Li JS; Li JN; Guo SH; Zhou WD
    Opt Lett; 2021 Jan; 46(2):290-293. PubMed ID: 33449010
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers.
    Corrigan TD; Park DH; Drew HD; Guo SH; Kolb PW; Herman WN; Phaneuf RJ
    Appl Opt; 2012 Mar; 51(8):1109-14. PubMed ID: 22410990
    [TBL] [Abstract][Full Text] [Related]  

  • 59. One-way and near-absolute polarization insensitive near-perfect absorption by using an all-dielectric metasurface.
    Yildirim DU; Ghobadi A; Soydan MC; Serebryannikov AE; Ozbay E
    Opt Lett; 2020 Apr; 45(7):2010-2013. PubMed ID: 32236055
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Highly Sensitive Color Tunablility by Scalable Nanomorphology of a Dielectric Layer in Liquid-Permeable Metal-Insulator-Metal Structure.
    Yu ES; Lee SH; Bae YG; Choi J; Lee D; Kim C; Lee T; Lee SY; Lee SD; Ryu YS
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38581-38587. PubMed ID: 30295452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.