These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 29109997)

  • 1. Foreign In
    Bu X; Wang G; Tian Y
    Nanoscale; 2017 Nov; 9(44):17513-17523. PubMed ID: 29109997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. n-Fe₂O₃ to N⁺-TiO₂Heterojunction Photoanode for Photoelectrochemical Water Oxidation.
    Yang JS; Lin WH; Lin CY; Wang BS; Wu JJ
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13314-21. PubMed ID: 26027640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled Growth of Ferrihydrite Branched Nanosheet Arrays and Their Transformation to Hematite Nanosheet Arrays for Photoelectrochemical Water Splitting.
    Ji M; Cai J; Ma Y; Qi L
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3651-60. PubMed ID: 26517010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facet-Dependent Kinetics and Energetics of Hematite for Solar Water Oxidation Reactions.
    Li W; Yang KR; Yao X; He Y; Dong Q; Brudvig GW; Batista VS; Wang D
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5616-5622. PubMed ID: 29792412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays.
    Wang J; Feng B; Su J; Guo L
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23143-50. PubMed ID: 27508404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hematite Photoanode with Complex Nanoarchitecture Providing Tunable Gradient Doping and Low Onset Potential for Photoelectrochemical Water Splitting.
    Ahn HJ; Goswami A; Riboni F; Kment S; Naldoni A; Mohajernia S; Zboril R; Schmuki P
    ChemSusChem; 2018 Jun; 11(11):1873-1879. PubMed ID: 29644796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grey hematite photoanodes decrease the onset potential in photoelectrochemical water oxidation.
    Liu PF; Wang C; Wang Y; Li Y; Zhang B; Zheng LR; Jiang Z; Zhao H; Yang HG
    Sci Bull (Beijing); 2021 May; 66(10):1013-1021. PubMed ID: 36654246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Lupinus-like TiO
    Zhu L; Lu H; Hao D; Wang L; Wu Z; Wang L; Li P; Ye J
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38537-38544. PubMed ID: 29047272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System.
    Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface passivation of undoped hematite nanorod arrays via aqueous solution growth for improved photoelectrochemical water splitting.
    Shen S; Li M; Guo L; Jiang J; Mao SS
    J Colloid Interface Sci; 2014 Aug; 427():20-4. PubMed ID: 24290228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deposition of FeOOH Layer on Ultrathin Hematite Nanoflakes to Promote Photoelectrochemical Water Splitting.
    Zhang W; Zhang Y; Miao X; Zhao L; Zhu C
    Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance.
    Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformally Coupling CoAl-Layered Double Hydroxides on Fluorine-Doped Hematite: Surface and Bulk Co-Modification for Enhanced Photoelectrochemical Water Oxidation.
    Wang C; Long X; Wei S; Wang T; Li F; Gao L; Hu Y; Li S; Jin J
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29799-29806. PubMed ID: 31368692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Screening and Surface Interrogation Studies of Au-Modified Hematite Photoanodes by Scanning Electrochemical Microscopy for Solar Water Splitting.
    Ma Y; Shinde PS; Li X; Pan S
    ACS Omega; 2019 Oct; 4(17):17257-17268. PubMed ID: 31656900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device.
    Wang P; Wang D; Lin J; Li X; Peng C; Gao X; Huang Q; Wang J; Xu H; Fan C
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2295-302. PubMed ID: 22452535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable Hematite Nanosheet Photoanodes for Enhanced Photoelectrochemical Water Splitting.
    Peerakiatkhajohn P; Yun JH; Chen H; Lyu M; Butburee T; Wang L
    Adv Mater; 2016 Aug; 28(30):6405-10. PubMed ID: 27167876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient utilization of light and charge separation over a hematite photoanode achieved through a noncontact photonic crystal film for photoelectrochemical water splitting.
    Yu WY; Ma DK; Yang DP; Yang XG; Xu QL; Chen W; Huang S
    Phys Chem Chem Phys; 2020 Sep; 22(36):20202-20211. PubMed ID: 32966422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrathin Hematite Photoanode with Gradient Ti Doping.
    Liu P; Wang C; Wang L; Wu X; Zheng L; Yang HG
    Research (Wash D C); 2020; 2020():5473217. PubMed ID: 32181447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sonochemical Assisted Solvothermal Synthesis of Gallium Oxynitride Nanosheets and their Solar-Driven Photoelectrochemical Water-Splitting Applications.
    Iqbal N; Khan I; Yamani ZH; Qurashi A
    Sci Rep; 2016 Aug; 6():32319. PubMed ID: 27561646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.