These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29110182)

  • 1. New complexity measures reveal that topographic loops of human alpha phase potentials are more complex in drowsy than in wake.
    Kalauzi A; Vuckovic A; Bojić T
    Med Biol Eng Comput; 2018 Jun; 56(6):967-978. PubMed ID: 29110182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling EEG fractal dimension changes in wake and drowsy states in humans--a preliminary study.
    Bojić T; Vuckovic A; Kalauzi A
    J Theor Biol; 2010 Jan; 262(2):214-22. PubMed ID: 19822155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topographic distribution of EEG alpha attractor correlation dimension values in wake and drowsy states in humans.
    Kalauzi A; Vuckovic A; Bojić T
    Int J Psychophysiol; 2015 Mar; 95(3):278-91. PubMed ID: 25462218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG alpha phase shifts during transition from wakefulness to drowsiness.
    Kalauzi A; Vuckovic A; Bojić T
    Int J Psychophysiol; 2012 Dec; 86(3):195-205. PubMed ID: 22580156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the fractal dimension of alpha envelope from wakefulness to drowsiness in the human electroencephalogram.
    Inouye T; Ukai S; Shinosaki K; Iyama A; Matsumoto Y; Toi S
    Neurosci Lett; 1994 Jun; 174(1):105-8. PubMed ID: 7970142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear dynamical analysis of the neonatal EEG time series: the relationship between sleep state and complexity.
    Janjarasjitt S; Scher MS; Loparo KA
    Clin Neurophysiol; 2008 Aug; 119(8):1812-1823. PubMed ID: 18486543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of fractal and power spectral EEG features: effects of topography and sleep stages.
    Weiss B; Clemens Z; Bódizs R; Halász P
    Brain Res Bull; 2011 Apr; 84(6):359-75. PubMed ID: 21147200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of sleep-stage characteristics in full-term newborns by means of spectral and fractal parameters.
    Carrozzi M; Accardo A; Bouquet F
    Sleep; 2004 Nov; 27(7):1384-93. PubMed ID: 15586792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative evaluation for the wakefulness state using complexity-based decision threshold value in EEG signals.
    Alaraj M; Fukami T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6175-8. PubMed ID: 24111150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parametric Cortical Representations of Complexity and Preference for Artistic and Computer-Generated Fractal Patterns Revealed by Single-Trial EEG Power Spectral Analysis.
    Rawls E; White R; Kane S; Stevens CE; Zabelina DL
    Neuroimage; 2021 Aug; 236():118092. PubMed ID: 33895307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase Synchronization Analysis of Natural Wake and Sleep States in Healthy Individuals Using a Novel Ensemble Phase Synchronization Measure.
    Nayak CS; Bhowmik A; Prasad PD; Pati S; Choudhury KK; Majumdar KK
    J Clin Neurophysiol; 2017 Jan; 34(1):77-83. PubMed ID: 27490322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single unit activity of the suprachiasmatic nucleus and surrounding neurons during the wake-sleep cycle in mice.
    Sakai K
    Neuroscience; 2014 Feb; 260():249-64. PubMed ID: 24355494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Changes in Scores on Principal Components of the EEG Spectrum do not Occur in the Course of "Drowsy" Sleep of Varying Length.
    Putilov AA
    Clin EEG Neurosci; 2015 Apr; 46(2):147-52. PubMed ID: 24699439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topographic mapping of EEG spectral power and coherence in delta activity during the transition from wakefulness to sleep.
    Tanaka H; Hayashi M; Hori T
    Psychiatry Clin Neurosci; 1999 Apr; 53(2):155-7. PubMed ID: 10459676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluctuations between sleep and wakefulness: wake-like features indicated by increased EEG alpha power during different sleep stages in nightmare disorder.
    Simor P; Horváth K; Ujma PP; Gombos F; Bódizs R
    Biol Psychol; 2013 Dec; 94(3):592-600. PubMed ID: 23831546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring alert and drowsy states by modeling EEG source nonstationarity.
    Hsu SH; Jung TP
    J Neural Eng; 2017 Oct; 14(5):056012. PubMed ID: 28627505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of wake-sleep stage 1 multichannel eeg patterns using spectral entropy features for drowsiness detection.
    Sriraam N; Padma Shri TK; Maheshwari U
    Australas Phys Eng Sci Med; 2016 Sep; 39(3):797-806. PubMed ID: 27550443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal correlation between two channels EEG of bipolar lead in the head midline is associated with sleep-wake stages.
    Li Y; Tang X; Xu Z; Liu W; Li J
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):147-55. PubMed ID: 26934877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison between human awake, meditation and drowsiness EEG activities based on directed transfer function and MVDR coherence methods.
    Dissanayaka C; Ben-Simon E; Gruberger M; Maron-Katz A; Sharon H; Hendler T; Cvetkovic D
    Med Biol Eng Comput; 2015 Jul; 53(7):599-607. PubMed ID: 25773370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociated wake-like and sleep-like electro-cortical activity during sleep.
    Nobili L; Ferrara M; Moroni F; De Gennaro L; Russo GL; Campus C; Cardinale F; De Carli F
    Neuroimage; 2011 Sep; 58(2):612-9. PubMed ID: 21718789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.