These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 29110231)

  • 1. Treatment of synthetic textile wastewater containing dye mixtures with microcosms.
    Yaseen DA; Scholz M
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1980-1997. PubMed ID: 29110231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of experimental ponds for the treatment of dye wastewater under controlled and semi-natural conditions.
    Yaseen DA; Scholz M
    Environ Sci Pollut Res Int; 2017 Jul; 24(19):16031-16040. PubMed ID: 28537020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of artificial wastewater containing two azo textile dyes by vertical-flow constructed wetlands.
    Hussein A; Scholz M
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):6870-6889. PubMed ID: 29270896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of RSM modeling for optimizing decolorization of simulated textile wastewater by Pseudomonas aeruginosa strain ZM130 capable of simultaneous removal of reactive dyes and hexavalent chromium.
    Maqbool Z; Hussain S; Ahmad T; Nadeem H; Imran M; Khalid A; Abid M; Martin-Laurent F
    Environ Sci Pollut Res Int; 2016 Jun; 23(11):11224-11239. PubMed ID: 26920535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutrient removal by duckweed from anaerobically treated swine wastewater in lab-scale stabilization ponds in Vietnam.
    Dinh TTU; Soda S; Nguyen TAH; Nakajima J; Cao TH
    Sci Total Environ; 2020 Jun; 722():137854. PubMed ID: 32197162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ADMI color and toxicity reductions in raw textile mill effluent and dye mixtures by TiO
    Mounteer AH; Arcanjo GS; Coimbra ECL; da Silva LMM
    Environ Sci Pollut Res Int; 2019 Feb; 26(5):4260-4265. PubMed ID: 30069777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of duckweed species diversity on biomass productivity and nutrient removal efficiency in swine wastewater.
    Zhao Z; Shi H; Liu Y; Zhao H; Su H; Wang M; Zhao Y
    Bioresour Technol; 2014 Sep; 167():383-9. PubMed ID: 24998479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of high ammonium level on biomass accumulation of common duckweed Lemna minor L.
    Wang W; Yang C; Tang X; Gu X; Zhu Q; Pan K; Hu Q; Ma D
    Environ Sci Pollut Res Int; 2014 Dec; 21(24):14202-10. PubMed ID: 25056754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance evaluation of two Aspergillus spp. for the decolourization of reactive dyes by bioaccumulation and biosorption.
    Mathur M; Gola D; Panja R; Malik A; Ahammad SZ
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):345-352. PubMed ID: 29039036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye.
    Zhao DH; Gao HW
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):97-105. PubMed ID: 19263103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlorine disinfection of dye wastewater: implications for a commercial azo dye mixture.
    Vacchi FI; Albuquerque AF; Vendemiatti JA; Morales DA; Ormond AB; Freeman HS; Zocolo GJ; Zanoni MV; Umbuzeiro G
    Sci Total Environ; 2013 Jan; 442():302-9. PubMed ID: 23178834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated (electro- and bio-oxidation) approach for remediation of industrial wastewater containing azo-dyes: Understanding the degradation mechanism and toxicity assessment.
    Aravind P; Selvaraj H; Ferro S; Sundaram M
    J Hazard Mater; 2016 Nov; 318():203-215. PubMed ID: 27427887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of Fe-doped Bi
    Dinesh GK; Anandan S; Sivasankar T
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20100-20110. PubMed ID: 26786580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decolorization of acid, disperse and reactive dyes by Trametes versicolor CBR43.
    Yang SO; Sodaneath H; Lee JI; Jung H; Choi JH; Ryu HW; Cho KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jul; 52(9):862-872. PubMed ID: 28463583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring the fate and behavior of TiO
    Mahlalela LC; Ngila JC; Dlamini LN
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jul; 52(8):794-803. PubMed ID: 28368778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of chromium ions from wastewater by duckweed, Lemna minor L. by using a pilot system with continuous flow.
    Uysal Y
    J Hazard Mater; 2013 Dec; 263 Pt 2():486-92. PubMed ID: 24231333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using modified fish scale waste from
    Niero G; Corrêa AXR; Trierweiler G; Matos AJF; Corrêa R; Bazani HAG; Radetski CM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(11):1083-1090. PubMed ID: 31264911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater.
    Franca RD; Vieira A; Mata AM; Carvalho GS; Pinheiro HM; Lourenço ND
    Water Res; 2015 Nov; 85():327-36. PubMed ID: 26343991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response surface optimization of electrochemical treatment of textile dye wastewater.
    Körbahti BK
    J Hazard Mater; 2007 Jun; 145(1-2):277-86. PubMed ID: 17184910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some properties of a sequencing batch reactor system for removal of vat dyes.
    Sirianuntapiboon S; Chairattanawan K; Jungphungsukpanich S
    Bioresour Technol; 2006 Jul; 97(10):1243-52. PubMed ID: 16023339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.