These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29110324)

  • 1. CntA oxygenase substrate profile comparison and oxygen dependency of TMA production in Providencia rettgeri.
    Kalnins G; Sevostjanovs E; Hartmane D; Grinberga S; Tars K
    J Basic Microbiol; 2018 Jan; 58(1):52-59. PubMed ID: 29110324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota.
    Zhu Y; Jameson E; Crosatti M; Schäfer H; Rajakumar K; Bugg TD; Chen Y
    Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4268-73. PubMed ID: 24591617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation.
    Kuka J; Liepinsh E; Makrecka-Kuka M; Liepins J; Cirule H; Gustina D; Loza E; Zharkova-Malkova O; Grinberga S; Pugovics O; Dambrova M
    Life Sci; 2014 Nov; 117(2):84-92. PubMed ID: 25301199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of carnitine monooxygenase CntA substrate specificity, inhibition, and intersubunit electron transfer.
    Quareshy M; Shanmugam M; Townsend E; Jameson E; Bugg TDH; Cameron AD; Chen Y
    J Biol Chem; 2021; 296():100038. PubMed ID: 33158989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carnitine metabolism in the human gut: characterization of the two-component carnitine monooxygenase CntAB from
    Massmig M; Reijerse E; Krausze J; Laurich C; Lubitz W; Jahn D; Moser J
    J Biol Chem; 2020 Sep; 295(37):13065-13078. PubMed ID: 32694223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of an in-vitro batch fermentation (human colon) model for investigating mechanisms of TMA production from choline, L-carnitine and related precursors by the human gut microbiota.
    Day-Walsh P; Shehata E; Saha S; Savva GM; Nemeckova B; Speranza J; Kellingray L; Narbad A; Kroon PA
    Eur J Nutr; 2021 Oct; 60(7):3987-3999. PubMed ID: 33934200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Major Increase in Microbiota-Dependent Proatherogenic Metabolite TMAO One Year After Bariatric Surgery.
    Trøseid M; Hov JR; Nestvold TK; Thoresen H; Berge RK; Svardal A; Lappegård KT
    Metab Syndr Relat Disord; 2016 May; 14(4):197-201. PubMed ID: 27081744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ruminant meat and milk contain δ-valerobetaine, another precursor of trimethylamine N-oxide (TMAO) like γ-butyrobetaine.
    Servillo L; D'Onofrio N; Giovane A; Casale R; Cautela D; Castaldo D; Iannaccone F; Neglia G; Campanile G; Balestrieri ML
    Food Chem; 2018 Sep; 260():193-199. PubMed ID: 29699662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of dietary choline, betaine, and L-carnitine on the generation of trimethylamine-N-oxide in healthy mice.
    Yu ZL; Zhang LY; Jiang XM; Xue CH; Chi N; Zhang TT; Wang YM
    J Food Sci; 2020 Jul; 85(7):2207-2215. PubMed ID: 32572979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO.
    Koeth RA; Levison BS; Culley MK; Buffa JA; Wang Z; Gregory JC; Org E; Wu Y; Li L; Smith JD; Tang WHW; DiDonato JA; Lusis AJ; Hazen SL
    Cell Metab; 2014 Nov; 20(5):799-812. PubMed ID: 25440057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidation of an anaerobic pathway for metabolism of l-carnitine-derived γ-butyrobetaine to trimethylamine in human gut bacteria.
    Rajakovich LJ; Fu B; Bollenbach M; Balskus EP
    Proc Natl Acad Sci U S A; 2021 Aug; 118(32):. PubMed ID: 34362844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-component carnitine monooxygenase from Escherichia coli: functional characterization, inhibition and mutagenesis of the molecular interface.
    Piskol F; Neubauer K; Eggers M; Bode LM; Jasper J; Slusarenko A; Reijerse E; Lubitz W; Jahn D; Moser J
    Biosci Rep; 2022 Sep; 42(9):. PubMed ID: 36066069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncovering the trimethylamine-producing bacteria of the human gut microbiota.
    Rath S; Heidrich B; Pieper DH; Vital M
    Microbiome; 2017 May; 5(1):54. PubMed ID: 28506279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans.
    Koeth RA; Lam-Galvez BR; Kirsop J; Wang Z; Levison BS; Gu X; Copeland MF; Bartlett D; Cody DB; Dai HJ; Culley MK; Li XS; Fu X; Wu Y; Li L; DiDonato JA; Tang WHW; Garcia-Garcia JC; Hazen SL
    J Clin Invest; 2019 Jan; 129(1):373-387. PubMed ID: 30530985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of biosynthesis of trimethylamine oxide from choline in the teleost tilapia, Oreochromis niloticus, under freshwater conditions.
    Niizeki N; Daikoku T; Hirata T; El-Shourbagy I; Song X; Sakaguchi M
    Comp Biochem Physiol B Biochem Mol Biol; 2002 Mar; 131(3):371-86. PubMed ID: 11959019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dietary, anthropometric, and biochemical factors influencing plasma choline, carnitine, trimethylamine, and trimethylamine-N-oxide concentrations.
    Malinowska AM; Szwengiel A; Chmurzynska A
    Int J Food Sci Nutr; 2017 Jun; 68(4):488-495. PubMed ID: 27855528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methodological considerations for the identification of choline and carnitine-degrading bacteria in the gut.
    Jameson E; Quareshy M; Chen Y
    Methods; 2018 Oct; 149():42-48. PubMed ID: 29684641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vitro exploratory study of dietary strategies based on polyphenol-rich beverages, fruit juices and oils to control trimethylamine production in the colon.
    Bresciani L; Dall'Asta M; Favari C; Calani L; Del Rio D; Brighenti F
    Food Funct; 2018 Dec; 9(12):6470-6483. PubMed ID: 30465688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metagenomic analysis of gut microbiota reveals its role in trimethylamine metabolism in heart failure.
    Emoto T; Hayashi T; Tabata T; Yamashita T; Watanabe H; Takahashi T; Gotoh Y; Kami K; Yoshida N; Saito Y; Tanaka H; Matsumoto K; Hayashi T; Yamada T; Hirata KI
    Int J Cardiol; 2021 Sep; 338():138-142. PubMed ID: 34102245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of trimethylamines in kelp bass (Paralabrax clathratus) and marine and freshwater pink salmon (Oncorhynchus gorbuscha).
    Charest RP; Chenoweth M; Dunn A
    J Comp Physiol B; 1988; 158(5):609-19. PubMed ID: 3249023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.