These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29110324)

  • 21. The Metabolite Trimethylamine-N-Oxide is an Emergent Biomarker of Human Health.
    Chhibber-Goel J; Singhal V; Parakh N; Bhargava B; Sharma A
    Curr Med Chem; 2017 Nov; 24(36):3942-3953. PubMed ID: 27573063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mammalian-microbial cometabolism of L-carnitine in the context of atherosclerosis.
    Claus SP
    Cell Metab; 2014 Nov; 20(5):699-700. PubMed ID: 25440049
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Light-Activated Electron Transfer and Catalytic Mechanism of Carnitine Oxidation by Rieske-Type Oxygenase from Human Microbiota.
    Shanmugam M; Quareshy M; Cameron AD; Bugg TDH; Chen Y
    Angew Chem Int Ed Engl; 2021 Feb; 60(9):4529-4534. PubMed ID: 33180358
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potential TMA-Producing Bacteria Are Ubiquitously Found in Mammalia.
    Rath S; Rud T; Pieper DH; Vital M
    Front Microbiol; 2019; 10():2966. PubMed ID: 31998260
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metagenomic data-mining reveals contrasting microbial populations responsible for trimethylamine formation in human gut and marine ecosystems.
    Jameson E; Doxey AC; Airs R; Purdy KJ; Murrell JC; Chen Y
    Microb Genom; 2016 Sep; 2(9):e000080. PubMed ID: 28785417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural mechanism for bacterial oxidation of oceanic trimethylamine into trimethylamine N-oxide.
    Li CY; Chen XL; Zhang D; Wang P; Sheng Q; Peng M; Xie BB; Qin QL; Li PY; Zhang XY; Su HN; Song XY; Shi M; Zhou BC; Xun LY; Chen Y; Zhang YZ
    Mol Microbiol; 2017 Mar; 103(6):992-1003. PubMed ID: 27997715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gut microbiota metabolism of L-carnitine and cardiovascular risk.
    Ussher JR; Lopaschuk GD; Arduini A
    Atherosclerosis; 2013 Dec; 231(2):456-61. PubMed ID: 24267266
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of TMAO productivity from carnitine challenge facilitates personalized nutrition and microbiome signatures discovery.
    Wu WK; Panyod S; Liu PY; Chen CC; Kao HL; Chuang HL; Chen YH; Zou HB; Kuo HC; Kuo CH; Liao BY; Chiu THT; Chung CH; Lin AY; Lee YC; Tang SL; Wang JT; Wu YW; Hsu CC; Sheen LY; Orekhov AN; Wu MS
    Microbiome; 2020 Nov; 8(1):162. PubMed ID: 33213511
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trimethylamine N-Oxide, the Microbiome, and Heart and Kidney Disease.
    Zeisel SH; Warrier M
    Annu Rev Nutr; 2017 Aug; 37():157-181. PubMed ID: 28715991
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The MttB superfamily member MtyB from the human gut symbiont Eubacterium limosum is a cobalamin-dependent γ-butyrobetaine methyltransferase.
    Ellenbogen JB; Jiang R; Kountz DJ; Zhang L; Krzycki JA
    J Biol Chem; 2021 Nov; 297(5):101327. PubMed ID: 34688665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of Flavin-Containing Monooxygenases for Conversion of Trimethylamine in Salmon Protein Hydrolysates.
    Goris M; Puntervoll P; Rojo D; Claussen J; Larsen Ø; Garcia-Moyano A; Almendral D; Barbas C; Ferrer M; Bjerga GEK
    Appl Environ Microbiol; 2020 Nov; 86(24):. PubMed ID: 32978141
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure.
    Trøseid M; Ueland T; Hov JR; Svardal A; Gregersen I; Dahl CP; Aakhus S; Gude E; Bjørndal B; Halvorsen B; Karlsen TH; Aukrust P; Gullestad L; Berge RK; Yndestad A
    J Intern Med; 2015 Jun; 277(6):717-26. PubMed ID: 25382824
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Carnitine-butyrobetaine-trimethylamine-N-oxide pathway and its association with cardiovascular mortality in patients with carotid atherosclerosis.
    Skagen K; Trøseid M; Ueland T; Holm S; Abbas A; Gregersen I; Kummen M; Bjerkeli V; Reier-Nilsen F; Russell D; Svardal A; Karlsen TH; Aukrust P; Berge RK; Hov JE; Halvorsen B; Skjelland M
    Atherosclerosis; 2016 Apr; 247():64-9. PubMed ID: 26868510
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TMAO Upregulates Members of the miR-17/92 Cluster and Impacts Targets Associated with Atherosclerosis.
    Díez-Ricote L; Ruiz-Valderrey P; Micó V; Blanco R; Tomé-Carneiro J; Dávalos A; Ordovás JM; Daimiel L
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36292963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dioxin-like pollutants increase hepatic flavin containing monooxygenase (FMO3) expression to promote synthesis of the pro-atherogenic nutrient biomarker trimethylamine N-oxide from dietary precursors.
    Petriello MC; Hoffman JB; Sunkara M; Wahlang B; Perkins JT; Morris AJ; Hennig B
    J Nutr Biochem; 2016 Jul; 33():145-53. PubMed ID: 27155921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous targeted analysis of trimethylamine-N-oxide, choline, betaine, and carnitine by high performance liquid chromatography tandem mass spectrometry.
    Liu J; Zhao M; Zhou J; Liu C; Zheng L; Yin Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Nov; 1035():42-48. PubMed ID: 27669507
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biosynthesis and turnover of trimethylamine oxide in the teleost cod, Gadus morhua.
    Agústsson I; Strøm AR
    J Biol Chem; 1981 Aug; 256(15):8045-9. PubMed ID: 7263638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integrated metagenomics identifies a crucial role for trimethylamine-producing Lachnoclostridium in promoting atherosclerosis.
    Cai YY; Huang FQ; Lao X; Lu Y; Gao X; Alolga RN; Yin K; Zhou X; Wang Y; Liu B; Shang J; Qi LW; Li J
    NPJ Biofilms Microbiomes; 2022 Mar; 8(1):11. PubMed ID: 35273169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prevention of Vascular Inflammation by Pterostilbene via Trimethylamine-N-Oxide Reduction and Mechanism of Microbiota Regulation.
    Koh YC; Li S; Chen PY; Wu JC; Kalyanam N; Ho CT; Pan MH
    Mol Nutr Food Res; 2019 Oct; 63(20):e1900514. PubMed ID: 31368236
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Phospholipid-Protein Complex from Antarctic Krill Reduced Plasma Homocysteine Levels and Increased Plasma Trimethylamine-N-Oxide (TMAO) and Carnitine Levels in Male Wistar Rats.
    Bjørndal B; Ramsvik MS; Lindquist C; Nordrehaug JE; Bruheim I; Svardal A; Nygård O; Berge RK
    Mar Drugs; 2015 Sep; 13(9):5706-21. PubMed ID: 26371012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.