These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 29110375)
1. Modulation of immunogenicity of poly(sarcosine) displayed on various nanoparticle surfaces due to different physical properties. Kim CJ; Hara E; Watabe N; Hara I; Kimura S J Pept Sci; 2017 Dec; 23(12):889-898. PubMed ID: 29110375 [TBL] [Abstract][Full Text] [Related]
2. Immune activation with peptide assemblies carrying Lewis y tumor-associated carbohydrate antigen. Yamazaki Y; Watabe N; Obata H; Hara E; Ohmae M; Kimura S J Pept Sci; 2017 Feb; 23(2):189-197. PubMed ID: 27723168 [TBL] [Abstract][Full Text] [Related]
3. Suppressive immune response of poly-(sarcosine) chains in peptide-nanosheets in contrast to polymeric micelles. Hara E; Ueda M; Kim CJ; Makino A; Hara I; Ozeki E; Kimura S J Pept Sci; 2014 Jul; 20(7):570-7. PubMed ID: 24863398 [TBL] [Abstract][Full Text] [Related]
4. Tuning the Viscoelasticity of Peptide Vesicles by Adjusting Hydrophobic Helical Blocks Comprising Amphiphilic Polypeptides. Kim CJ; Ueda M; Imai T; Sugiyama J; Kimura S Langmuir; 2017 Jun; 33(22):5423-5429. PubMed ID: 28493724 [TBL] [Abstract][Full Text] [Related]
5. Size control of core-shell-type polymeric micelle with a nanometer precision. Makino A; Hara E; Hara I; Ozeki E; Kimura S Langmuir; 2014 Jan; 30(2):669-74. PubMed ID: 24372167 [TBL] [Abstract][Full Text] [Related]
6. Immune responses against Lewis Y tumor-associated carbohydrate antigen displayed densely on self-assembling nanocarriers. Yamazaki Y; Nambu Y; Ohmae M; Sugai M; Kimura S Org Biomol Chem; 2018 Nov; 16(43):8095-8105. PubMed ID: 30328452 [TBL] [Abstract][Full Text] [Related]
7. Control of in vivo blood clearance time of polymeric micelle by stereochemistry of amphiphilic polydepsipeptides. Makino A; Hara E; Hara I; Yamahara R; Kurihara K; Ozeki E; Yamamoto F; Kimura S J Control Release; 2012 Aug; 161(3):821-5. PubMed ID: 22580110 [TBL] [Abstract][Full Text] [Related]
8. Fusion and fission of molecular assemblies of amphiphilic polypeptides generating small vesicles from nanotubes. Watabe N; Joo Kim C; Kimura S Biopolymers; 2017 Mar; 108(2):. PubMed ID: 27353122 [TBL] [Abstract][Full Text] [Related]
9. Factors influencing in vivo disposition of polymeric micelles on multiple administrations. Hara E; Ueda M; Makino A; Hara I; Ozeki E; Kimura S ACS Med Chem Lett; 2014 Aug; 5(8):873-7. PubMed ID: 25147606 [TBL] [Abstract][Full Text] [Related]
10. Evasion from accelerated blood clearance of nanocarrier named as "Lactosome" induced by excessive administration of Lactosome. Hara E; Makino A; Kurihara K; Sugai M; Shimizu A; Hara I; Ozeki E; Kimura S Biochim Biophys Acta; 2013 Aug; 1830(8):4046-52. PubMed ID: 23545239 [TBL] [Abstract][Full Text] [Related]
11. Tubular Assembly Formation Induced by Leucine Alignment along the Hydrophobic Helix of Amphiphilic Polypeptides. Abosheasha MA; Itagaki T; Ito Y; Ueda M Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769498 [TBL] [Abstract][Full Text] [Related]
12. Activation of B1a cells in peritoneal cavity by T cell-independent antigen expressed on polymeric micelle. Kim CJ; Hara E; Shimizu A; Sugai M; Kimura S J Pharm Sci; 2015 May; 104(5):1839-47. PubMed ID: 25720375 [TBL] [Abstract][Full Text] [Related]
13. Tubular Network Formation by Mixing Amphiphilic Polypeptides with Differing Hydrophilic Blocks. Rahman MM; Ueda M; Son K; Seo S; Takeoka S; Hirose T; Ito Y Biomacromolecules; 2019 Oct; 20(10):3908-3914. PubMed ID: 31532187 [TBL] [Abstract][Full Text] [Related]
14. Amphiphilic poly(Ala)-b-poly(Sar) microspheres loaded with hydrophobic drug. Kidchob T; Kimura S; Imanishi Y J Control Release; 1998 Feb; 51(2-3):241-8. PubMed ID: 9685922 [TBL] [Abstract][Full Text] [Related]
15. Pharmacokinetic change of nanoparticulate formulation "Lactosome" on multiple administrations. Hara E; Makino A; Kurihara K; Yamamoto F; Ozeki E; Kimura S Int Immunopharmacol; 2012 Nov; 14(3):261-6. PubMed ID: 22841811 [TBL] [Abstract][Full Text] [Related]
16. Reduced immune response to polymeric micelles coating sialic acids. Ohmae M; Kojima M; Mihara K; Yamazaki Y; Hara I; Hara E; Kimura S Bioorg Med Chem Lett; 2016 Oct; 26(20):4976-4982. PubMed ID: 27624073 [TBL] [Abstract][Full Text] [Related]
17. Controlling the self-assembly structure of magnetic nanoparticles and amphiphilic block-copolymers: from micelles to vesicles. Hickey RJ; Haynes AS; Kikkawa JM; Park SJ J Am Chem Soc; 2011 Feb; 133(5):1517-25. PubMed ID: 21208004 [TBL] [Abstract][Full Text] [Related]
18. Supramolecular assembly of block copolypeptides with semiconductor nanocrystals. Atmaja B; Cha JN; Marshall A; Frank CW Langmuir; 2009 Jan; 25(2):707-15. PubMed ID: 19072205 [TBL] [Abstract][Full Text] [Related]
19. One-pot glovebox-free synthesis, characterization, and self-assembly of novel amphiphilic poly(sarcosine-b-caprolactone) diblock copolymers. Cui S; Wang X; Li Z; Zhang Q; Wu W; Liu J; Wu H; Chen C; Guo K Macromol Rapid Commun; 2014 Nov; 35(22):1954-9. PubMed ID: 25283643 [TBL] [Abstract][Full Text] [Related]
20. Poly(ε-caprolactone)-block-polysarcosine by Ring-Opening Polymerization of Sarcosine N-Thiocarboxyanhydride: Synthesis and Thermoresponsive Self-Assembly. Deng Y; Zou T; Tao X; Semetey V; Trepout S; Marco S; Ling J; Li MH Biomacromolecules; 2015 Oct; 16(10):3265-74. PubMed ID: 26388179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]