These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A model for Joule heating-induced dispersion in microchip electrophoresis. Wang Y; Lin Q; Mukherjee T Lab Chip; 2004 Dec; 4(6):625-31. PubMed ID: 15570376 [TBL] [Abstract][Full Text] [Related]
3. Controlling Dispersion during Single-Cell Polyacrylamide-Gel Electrophoresis in Open Microfluidic Devices. Pan Q; Yamauchi KA; Herr AE Anal Chem; 2018 Nov; 90(22):13419-13426. PubMed ID: 30346747 [TBL] [Abstract][Full Text] [Related]
4. Influence of ignored and well-known zone distortions on the separation performance of proteins in capillary free zone electrophoresis with special reference to analysis in polyacrylamide-coated fused silica capillaries in various buffers. I. Theoretical studies. Hjertén S; Mohabbati S; Westerlund D J Chromatogr A; 2004 Oct; 1053(1-2):181-99. PubMed ID: 15543984 [TBL] [Abstract][Full Text] [Related]
5. Ferguson analysis of protein electromigration during single-cell electrophoresis in an open microfluidic device. Tan KY; Herr AE Analyst; 2020 May; 145(10):3732-3741. PubMed ID: 32347219 [TBL] [Abstract][Full Text] [Related]
6. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels. Tang G; Yan D; Yang C; Gong H; Chai JC; Lam YC Electrophoresis; 2006 Feb; 27(3):628-39. PubMed ID: 16456892 [TBL] [Abstract][Full Text] [Related]
7. Analytical and numerical study of Joule heating effects on electrokinetically pumped continuous flow PCR chips. Gui L; Ren CL Langmuir; 2008 Mar; 24(6):2938-46. PubMed ID: 18257592 [TBL] [Abstract][Full Text] [Related]
8. Harnessing Joule heating in microfluidic thermal gel electrophoresis to create reversible barriers for cell enrichment. Cornejo MA; Linz TH Electrophoresis; 2021 Jun; 42(11):1238-1246. PubMed ID: 33570796 [TBL] [Abstract][Full Text] [Related]
9. Rapid concentration of deoxyribonucleic acid via Joule heating induced temperature gradient focusing in poly-dimethylsiloxane microfluidic channel. Ge Z; Wang W; Yang C Anal Chim Acta; 2015 Feb; 858():91-7. PubMed ID: 25597807 [TBL] [Abstract][Full Text] [Related]
10. Joule heating monitoring in a microfluidic channel by observing the Brownian motion of an optically trapped microsphere. Brans T; Strubbe F; Schreuer C; Vandewiele S; Neyts K; Beunis F Electrophoresis; 2015 Sep; 36(17):2102-9. PubMed ID: 25963750 [TBL] [Abstract][Full Text] [Related]
11. Numerical Study of Joule Heating Effects on Microfluidics Device Reliability in Electrode Based Devices. Yousuff CM; Tirth V; Zackria Ansar Babu Irshad M; Irshad K; Algahtani A; Islam S Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640216 [TBL] [Abstract][Full Text] [Related]
12. Joule heating induced stream broadening in free-flow zone electrophoresis. Dutta D Electrophoresis; 2018 Mar; 39(5-6):760-769. PubMed ID: 29115696 [TBL] [Abstract][Full Text] [Related]
13. Optimization of a microfluidic electrophoretic immunoassay using a Peltier cooler. Mukhitov N; Yi L; Schrell AM; Roper MG J Chromatogr A; 2014 Nov; 1367():154-60. PubMed ID: 25263064 [TBL] [Abstract][Full Text] [Related]
14. Numerical modeling of Joule heating-induced temperature gradient focusing in microfluidic channels. Tang G; Yang C Electrophoresis; 2008 Mar; 29(5):1006-12. PubMed ID: 18306182 [TBL] [Abstract][Full Text] [Related]
15. Analytical study of Joule heating effects on electrokinetic transportation in capillary electrophoresis. Xuan X; Li D J Chromatogr A; 2005 Feb; 1064(2):227-37. PubMed ID: 15739891 [TBL] [Abstract][Full Text] [Related]
16. Joule heating in electrokinetic flow. Xuan X Electrophoresis; 2008 Jan; 29(1):33-43. PubMed ID: 18058768 [TBL] [Abstract][Full Text] [Related]
17. Embedded ceria nanoparticles in gel improve electrophoretic separation: a preliminary demonstration. Zarei M; Ahmadzadeh H; Goharshadi EK Analyst; 2015 Jul; 140(13):4434-44. PubMed ID: 25948088 [TBL] [Abstract][Full Text] [Related]
18. Numerical modeling of the Joule heating effect on electrokinetic flow focusing. Huang KD; Yang RJ Electrophoresis; 2006 May; 27(10):1957-66. PubMed ID: 16619299 [TBL] [Abstract][Full Text] [Related]
19. Effect of Joule heating on electrokinetic transport. Cetin B; Li D Electrophoresis; 2008 Mar; 29(5):994-1005. PubMed ID: 18271065 [TBL] [Abstract][Full Text] [Related]
20. Microfluidic chemical cytometry based on modulation of local field strength. Wang HY; Lu C Chem Commun (Camb); 2006 Sep; (33):3528-30. PubMed ID: 16921434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]