These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 29110547)

  • 41. The-state-of-the-art of soft robotics to assist mobility: a review of physiotherapist and patient identified limitations of current lower-limb exoskeletons and the potential soft-robotic solutions.
    Morris L; Diteesawat RS; Rahman N; Turton A; Cramp M; Rossiter J
    J Neuroeng Rehabil; 2023 Jan; 20(1):18. PubMed ID: 36717869
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review.
    Louie DR; Eng JJ
    J Neuroeng Rehabil; 2016 Jun; 13(1):53. PubMed ID: 27278136
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design recommendations for exoskeletons: Perspectives of individuals with spinal cord injury.
    van Silfhout L; Hosman AJF; van de Meent H; Bartels RHMA; Edwards MJR
    J Spinal Cord Med; 2023 Mar; 46(2):256-261. PubMed ID: 34062111
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Feasibility of integrating robotic exoskeleton gait training in inpatient rehabilitation.
    Swank C; Sikka S; Driver S; Bennett M; Callender L
    Disabil Rehabil Assist Technol; 2020 May; 15(4):409-417. PubMed ID: 30887864
    [No Abstract]   [Full Text] [Related]  

  • 45. [Exoskeletons for rehabilitation of patients with spinal cord injuries. Options and limitations].
    Aach M; Meindl RC; Geßmann J; Schildhauer TA; Citak M; Cruciger O
    Unfallchirurg; 2015 Feb; 118(2):130-7. PubMed ID: 25672637
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assessment of In-Hospital Walking Velocity and Level of Assistance in a Powered Exoskeleton in Persons with Spinal Cord Injury.
    Yang A; Asselin P; Knezevic S; Kornfeld S; Spungen AM
    Top Spinal Cord Inj Rehabil; 2015; 21(2):100-9. PubMed ID: 26364279
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mobility Outcomes Following Five Training Sessions with a Powered Exoskeleton.
    Hartigan C; Kandilakis C; Dalley S; Clausen M; Wilson E; Morrison S; Etheridge S; Farris R
    Top Spinal Cord Inj Rehabil; 2015; 21(2):93-9. PubMed ID: 26364278
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study.
    Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA
    Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The future of SCI rehabilitation: Understanding the impact of exoskeletons on gait mechanics.
    Gorgey AS; Holman ME
    J Spinal Cord Med; 2018 Sep; 41(5):544-546. PubMed ID: 29869976
    [No Abstract]   [Full Text] [Related]  

  • 50. Accelerometry-enabled measurement of walking performance with a robotic exoskeleton: a pilot study.
    Lonini L; Shawen N; Scanlan K; Rymer WZ; Kording KP; Jayaraman A
    J Neuroeng Rehabil; 2016 Mar; 13():35. PubMed ID: 27037035
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cardiorespiratory demand and rate of perceived exertion during overground walking with a robotic exoskeleton in long-term manual wheelchair users with chronic spinal cord injury: A cross-sectional study.
    Escalona MJ; Brosseau R; Vermette M; Comtois AS; Duclos C; Aubertin-Leheudre M; Gagnon DH
    Ann Phys Rehabil Med; 2018 Jul; 61(4):215-223. PubMed ID: 29371106
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Wearable rehabilitation exoskeletons of the lower limb: analysis of versatility and adaptability.
    Plaza A; Hernandez M; Puyuelo G; Garces E; Garcia E
    Disabil Rehabil Assist Technol; 2023 May; 18(4):392-406. PubMed ID: 33332159
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The improvement of the lower limb exoskeletons on the gait of patients with spinal cord injury: A protocol for systematic review and meta-analysis.
    Xue X; Yang X; Tu H; Liu W; Kong D; Fan Z; Deng Z; Li N
    Medicine (Baltimore); 2022 Jan; 101(4):e28709. PubMed ID: 35089234
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Robotic Rehabilitation and Spinal Cord Injury: a Narrative Review.
    Mekki M; Delgado AD; Fry A; Putrino D; Huang V
    Neurotherapeutics; 2018 Jul; 15(3):604-617. PubMed ID: 29987763
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gym-based exoskeleton walking: A preliminary exploration of non-ambulatory end-user perspectives.
    Cahill A; Ginley OM; Bertrand C; Lennon O
    Disabil Health J; 2018 Jul; 11(3):478-485. PubMed ID: 29500092
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Time and Effort Required by Persons with Spinal Cord Injury to Learn to Use a Powered Exoskeleton for Assisted Walking.
    Kozlowski AJ; Bryce TN; Dijkers MP
    Top Spinal Cord Inj Rehabil; 2015; 21(2):110-21. PubMed ID: 26364280
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An integrated gait rehabilitation training based on Functional Electrical Stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: Preliminary results.
    Mazzoleni S; Battini E; Rustici A; Stampacchia G
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():289-293. PubMed ID: 28813833
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton.
    Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assisting hand function after spinal cord injury with a fabric-based soft robotic glove.
    Cappello L; Meyer JT; Galloway KC; Peisner JD; Granberry R; Wagner DA; Engelhardt S; Paganoni S; Walsh CJ
    J Neuroeng Rehabil; 2018 Jun; 15(1):59. PubMed ID: 29954401
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Usability test of a hand exoskeleton for activities of daily living: an example of user-centered design.
    Almenara M; Cempini M; Gómez C; Cortese M; Martín C; Medina J; Vitiello N; Opisso E
    Disabil Rehabil Assist Technol; 2017 Jan; 12(1):84-96. PubMed ID: 26376019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.