These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
499 related articles for article (PubMed ID: 29110736)
21. Wireless control of smartphones with tongue motion using tongue drive assistive technology. Kim J; Huo X; Ghovanloo M Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5250-3. PubMed ID: 21096049 [TBL] [Abstract][Full Text] [Related]
22. The role of assistive robotics in the lives of persons with disability. Brose SW; Weber DJ; Salatin BA; Grindle GG; Wang H; Vazquez JJ; Cooper RA Am J Phys Med Rehabil; 2010 Jun; 89(6):509-21. PubMed ID: 20134305 [TBL] [Abstract][Full Text] [Related]
23. AMiCUS-A Head Motion-Based Interface for Control of an Assistive Robot. Rudigkeit N; Gebhard M Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31242706 [TBL] [Abstract][Full Text] [Related]
24. Exploring the experience of clients with tetraplegia utilizing assistive technology for computer access. Folan A; Barclay L; Cooper C; Robinson M Disabil Rehabil Assist Technol; 2015 Jan; 10(1):46-52. PubMed ID: 24050283 [TBL] [Abstract][Full Text] [Related]
25. On the tip of the tongue: learning typing and pointing with an intra-oral computer interface. Caltenco HA; Breidegard B; Struijk LN Disabil Rehabil Assist Technol; 2014 Jul; 9(4):307-17. PubMed ID: 23931550 [TBL] [Abstract][Full Text] [Related]
26. Design of a wearable interface for lightweight robotic arm for people with mobility impairments. Baldi TL; Spagnoletti G; Dragusanu M; Prattichizzo D IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1567-1573. PubMed ID: 28814043 [TBL] [Abstract][Full Text] [Related]
27. Using speech recognition to enhance the Tongue Drive System functionality in computer access. Huo X; Ghovanloo M Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6393-6. PubMed ID: 22255801 [TBL] [Abstract][Full Text] [Related]
28. Voice-Activated Lightweight Reacher to Assist with Upper Extremity Movement Limitations: A Case Study. Khalid U; Conti GE; Erlandson RF; Ellis RD; Brown V; Pandya AK Assist Technol; 2015; 27(2):112-20. PubMed ID: 26132355 [TBL] [Abstract][Full Text] [Related]
29. A high-resolution tongue-based joystick to enable robot control for individuals with severe disabilities. Mohammadi M; Knoche H; Gaihede M; Bentsen B; Andreasen Struijk LNS IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1043-1048. PubMed ID: 31374767 [TBL] [Abstract][Full Text] [Related]
31. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping. Downey JE; Weiss JM; Muelling K; Venkatraman A; Valois JS; Hebert M; Bagnell JA; Schwartz AB; Collinger JL J Neuroeng Rehabil; 2016 Mar; 13():28. PubMed ID: 26987662 [TBL] [Abstract][Full Text] [Related]
32. Assisted Grasping in Individuals with Tetraplegia: Improving Control through Residual Muscle Contraction and Movement. Fonseca L; Tigra W; Navarro B; Guiraud D; Fattal C; Bó A; Fachin-Martins E; Leynaert V; Gélis A; Azevedo-Coste C Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31635286 [TBL] [Abstract][Full Text] [Related]
33. Visual Sensor Fusion Based Autonomous Robotic System for Assistive Drinking. Try P; Schöllmann S; Wöhle L; Gebhard M Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450861 [TBL] [Abstract][Full Text] [Related]
34. A Residual Movement Classification Based User Interface for Control of Assistive Devices by Persons With Complete Tetraplegia. Fonseca L; Guiraud D; Hiairrassary A; Fattal C; Azevedo-Coste C IEEE Trans Neural Syst Rehabil Eng; 2022; 30():569-578. PubMed ID: 35235517 [TBL] [Abstract][Full Text] [Related]
35. Development of inductive sensors for a robotic interface based on noninvasive tongue control. Kirtas O; Veltink P; Lontis R; Mohammadi M; Andreasen Struijk LNS IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176082 [TBL] [Abstract][Full Text] [Related]
36. User Based Development and Test of the EXOTIC Exoskeleton: Empowering Individuals with Tetraplegia Using a Compact, Versatile, 5-DoF Upper Limb Exoskeleton Controlled through Intelligent Semi-Automated Shared Tongue Control. Thøgersen MB; Mohammadi M; Gull MA; Bengtson SH; Kobbelgaard FV; Bentsen B; Khan BYA; Severinsen KE; Bai S; Bak T; Moeslund TB; Kanstrup AM; Andreasen Struijk LNS Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146260 [TBL] [Abstract][Full Text] [Related]
37. AMiCUS 2.0-System Presentation and Demonstration of Adaptability to Personal Needs by the Example of an Individual with Progressed Multiple Sclerosis. Rudigkeit N; Gebhard M Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098240 [TBL] [Abstract][Full Text] [Related]
38. Tongue-operated assistive technology with access to common smartphone applications via Bluetooth link. Kim J; Park H; Ghovanloo M Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4054-7. PubMed ID: 23366818 [TBL] [Abstract][Full Text] [Related]
39. Direct interaction with an assistive robot for individuals with chronic stroke. Kmetz B; Markham H; Brewer BR Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1264-7. PubMed ID: 22254546 [TBL] [Abstract][Full Text] [Related]
40. Performance Analysis of a Head and Eye Motion-Based Control Interface for Assistive Robots. Stalljann S; Wöhle L; Schäfer J; Gebhard M Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33327500 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]