These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1762 related articles for article (PubMed ID: 29110742)
1. Development and validation of anthropometric prediction equations for lean body mass, fat mass and percent fat in adults using the National Health and Nutrition Examination Survey (NHANES) 1999-2006. Lee DH; Keum N; Hu FB; Orav EJ; Rimm EB; Sun Q; Willett WC; Giovannucci EL Br J Nutr; 2017 Nov; 118(10):858-866. PubMed ID: 29110742 [TBL] [Abstract][Full Text] [Related]
2. Relationship between indices of obesity obtained by anthropometry and dual-energy X-ray absorptiometry: The Fourth and Fifth Korea National Health and Nutrition Examination Survey (KNHANES IV and V, 2008-2011). Kim SG; Ko Kd; Hwang IC; Suh HS; Kay S; Caterson I; Kim KK Obes Res Clin Pract; 2015; 9(5):487-98. PubMed ID: 25484303 [TBL] [Abstract][Full Text] [Related]
3. Derivation and validation of simple anthropometric equations to predict adipose tissue mass and total fat mass with MRI as the reference method. Al-Gindan YY; Hankey CR; Govan L; Gallagher D; Heymsfield SB; Lean ME Br J Nutr; 2015 Dec; 114(11):1852-67. PubMed ID: 26435103 [TBL] [Abstract][Full Text] [Related]
4. Body fat percentage prediction in older adults: Agreement between anthropometric equations and DXA. Silveira EA; Barbosa LS; Noll M; Pinheiro HA; de Oliveira C Clin Nutr; 2021 Apr; 40(4):2091-2099. PubMed ID: 33071014 [TBL] [Abstract][Full Text] [Related]
5. Nationally representative equations that include resistance and reactance for the prediction of percent body fat in Americans. Stevens J; Truesdale KP; Cai J; Ou FS; Reynolds KR; Heymsfield SB Int J Obes (Lond); 2017 Nov; 41(11):1669-1675. PubMed ID: 28736441 [TBL] [Abstract][Full Text] [Related]
6. Development and validation of anthropometric prediction equations for estimation of lean body mass and appendicular lean soft tissue in Indian men and women. Kulkarni B; Kuper H; Taylor A; Wells JC; Radhakrishna KV; Kinra S; Ben-Shlomo Y; Smith GD; Ebrahim S; Byrne NM; Hills AP J Appl Physiol (1985); 2013 Oct; 115(8):1156-62. PubMed ID: 23950165 [TBL] [Abstract][Full Text] [Related]
7. Prediction of percentage body fat in rural thai population using simple anthropometric measurements. Pongchaiyakul C; Kosulwat V; Rojroongwasinkul N; Charoenkiatkul S; Thepsuthammarat K; Laopaiboon M; Nguyen TV; Rajatanavin R Obes Res; 2005 Apr; 13(4):729-38. PubMed ID: 15897482 [TBL] [Abstract][Full Text] [Related]
8. Simplified method of clinical phenotyping for older men and women using established field-based measures. Fukuda DH; Smith-Ryan AE; Kendall KL; Moon JR; Stout JR Exp Gerontol; 2013 Dec; 48(12):1479-88. PubMed ID: 24140621 [TBL] [Abstract][Full Text] [Related]
9. New Equations to Predict Body Fat in Asian-Chinese Adults Using Age, Height, Skinfold Thickness, and Waist Circumference. Henry CJ; D/O Ponnalagu S; Bi X; Tan SY J Acad Nutr Diet; 2018 Jul; 118(7):1263-1269. PubMed ID: 29752188 [TBL] [Abstract][Full Text] [Related]
10. Cross-validation of anthropometric and bioelectrical resistance prediction equations for body composition in older people using the 4-compartment model as a criterion method. Goran MI; Toth MJ; Poehlman ET J Am Geriatr Soc; 1997 Jul; 45(7):837-43. PubMed ID: 9215335 [TBL] [Abstract][Full Text] [Related]
11. Prediction of percent body fat measurements in Americans 8 years and older. Stevens J; Ou FS; Cai J; Heymsfield SB; Truesdale KP Int J Obes (Lond); 2016 Apr; 40(4):587-94. PubMed ID: 26538187 [TBL] [Abstract][Full Text] [Related]
12. Skinfolds and coronary heart disease risk factors are more strongly associated with BMI than with the body adiposity index. Freedman DS; Ogden CL; Goodman AB; Blanck HM Obesity (Silver Spring); 2013 Jan; 21(1):E64-70. PubMed ID: 23401381 [TBL] [Abstract][Full Text] [Related]
13. Prediction of segmental percent fat using anthropometric variables. Demura S; Sato S; Noguchi T J Sports Med Phys Fitness; 2005 Dec; 45(4):518-23. PubMed ID: 16446684 [TBL] [Abstract][Full Text] [Related]
14. Adding anthropometric measures of regional adiposity to BMI improves prediction of cardiometabolic, inflammatory and adipokines profiles in youths: a cross-sectional study. Samouda H; de Beaufort C; Stranges S; Guinhouya BC; Gilson G; Hirsch M; Jacobs J; Leite S; Vaillant M; Dadoun F BMC Pediatr; 2015 Oct; 15():168. PubMed ID: 26497052 [TBL] [Abstract][Full Text] [Related]
15. Generalized Equations for Predicting Percent Body Fat from Anthropometric Measures Using a Criterion Five-Compartment Model. Cicone ZS; Nickerson BS; Choi YJ; Holmes CJ; Hornikel B; Fedewa MV; Esco MR Med Sci Sports Exerc; 2021 Dec; 53(12):2675-2682. PubMed ID: 34310492 [TBL] [Abstract][Full Text] [Related]
16. Appendicular skeletal muscle in hospitalised hip-fracture patients: development and cross-validation of anthropometric prediction equations against dual-energy X-ray absorptiometry. Villani AM; Crotty M; Cameron ID; Kurrle SE; Skuza PP; Cleland LG; Cobiac L; Miller MD Age Ageing; 2014 Nov; 43(6):857-62. PubMed ID: 25049262 [TBL] [Abstract][Full Text] [Related]
17. Percent body fat prediction equations for 8- to 17-year-old American children. Stevens J; Cai J; Truesdale KP; Cuttler L; Robinson TN; Roberts AL Pediatr Obes; 2014 Aug; 9(4):260-71. PubMed ID: 23670857 [TBL] [Abstract][Full Text] [Related]
18. Improved prediction of body fat by measuring skinfold thickness, circumferences, and bone breadths. Garcia AL; Wagner K; Hothorn T; Koebnick C; Zunft HJ; Trippo U Obes Res; 2005 Mar; 13(3):626-34. PubMed ID: 15833949 [TBL] [Abstract][Full Text] [Related]
19. The use of anthropometric and dual-energy X-ray absorptiometry (DXA) measures to estimate total abdominal and abdominal visceral fat in men and women. Clasey JL; Bouchard C; Teates CD; Riblett JE; Thorner MO; Hartman ML; Weltman A Obes Res; 1999 May; 7(3):256-64. PubMed ID: 10348496 [TBL] [Abstract][Full Text] [Related]
20. Generalised equations for the prediction of percentage body fat by anthropometry in adult men and women aged 18-81 years. Leahy S; O'Neill C; Sohun R; Toomey C; Jakeman P Br J Nutr; 2013 Feb; 109(4):678-85. PubMed ID: 22640975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]