BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 29110940)

  • 21. Leaching NCM cathode materials of spent lithium-ion batteries with phosphate acid-based deep eutectic solvent.
    He X; Wen Y; Wang X; Cui Y; Li L; Ma H
    Waste Manag; 2023 Feb; 157():8-16. PubMed ID: 36512926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective recovery of Li and FePO
    Kumar J; Shen X; Li B; Liu H; Zhao J
    Waste Manag; 2020 Jul; 113():32-40. PubMed ID: 32505109
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries.
    Gao W; Liu C; Cao H; Zheng X; Lin X; Wang H; Zhang Y; Sun Z
    Waste Manag; 2018 May; 75():477-485. PubMed ID: 29459203
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries.
    Li L; Ge J; Chen R; Wu F; Chen S; Zhang X
    Waste Manag; 2010 Dec; 30(12):2615-21. PubMed ID: 20817431
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Countercurrent leaching of Ni, Co, Mn, and Li from spent lithium-ion batteries.
    Jian Y; Yanqing L; Fangyang L; Ming J; Liangxing J
    Waste Manag Res; 2020 Dec; 38(12):1358-1366. PubMed ID: 32720588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regeneration and characterization of LiNi
    Wang Y; Ma L; Xi X; Nie Z; Zhang Y; Wen X; Lyu Z
    Waste Manag; 2019 Jul; 95():192-200. PubMed ID: 31351604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes.
    Yang Y; Xu S; He Y
    Waste Manag; 2017 Jun; 64():219-227. PubMed ID: 28336333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal phase and nanoscale size regulation utilizing the in-situ catalytic pyrolysis of bamboo sawdust in the recycling of spent lithium batteries.
    Chen Q; Zhang X; Cheng R; Shi H; Pei Y; Yang J; Zhao Q; Zhao X; Wu F
    Waste Manag; 2024 Jun; 182():186-196. PubMed ID: 38670002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries.
    Yang Y; Lei S; Song S; Sun W; Wang L
    Waste Manag; 2020 Feb; 102():131-138. PubMed ID: 31677520
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrometallurgical recovery of spent cobalt-based lithium-ion battery cathodes using ethanol as the reducing agent.
    Zhao J; Zhang B; Xie H; Qu J; Qu X; Xing P; Yin H
    Environ Res; 2020 Feb; 181():108803. PubMed ID: 31761334
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organics removal combined with in situ thermal-reduction for enhancing the liberation and metallurgy efficiency of LiCoO
    Zhang G; Yuan X; He Y; Wang H; Xie W; Zhang T
    Waste Manag; 2020 Sep; 115():113-120. PubMed ID: 32736031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning.
    He LP; Sun SY; Song XF; Yu JG
    Waste Manag; 2015 Dec; 46():523-8. PubMed ID: 26323202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recycling of LiNi
    Meng X; Hao J; Cao H; Lin X; Ning P; Zheng X; Chang J; Zhang X; Wang B; Sun Z
    Waste Manag; 2019 Feb; 84():54-63. PubMed ID: 30691913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Closed-loop recycling of spent lithium-ion batteries based on selective sulfidation: An unconventional approach.
    Gu K; Gao X; Chen Y; Qin W; Han J
    Waste Manag; 2023 Sep; 169():32-42. PubMed ID: 37393754
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A lattice defect-inspired leaching strategy toward simultaneous recovery and separation of value metals from spent cathode materials.
    Tao H; Yang Y; Xu S; Liu Q; Huang G; Xu Z
    Waste Manag; 2021 Nov; 135():40-46. PubMed ID: 34469829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media.
    Chen X; Zhou T
    Waste Manag Res; 2014 Nov; 32(11):1083-93. PubMed ID: 25378255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recover value metals from spent lithium-ion batteries via a combination of in-situ reduction pretreatment and facile acid leaching.
    Zhang Y; Yu M; Guo J; Liu S; Song H; Wu W; Zheng C; Gao X
    Waste Manag; 2023 Apr; 161():193-202. PubMed ID: 36893713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recycling valuable metals from spent lithium-ion batteries by ammonium sulfite-reduction ammonia leaching.
    Wu C; Li B; Yuan C; Ni S; Li L
    Waste Manag; 2019 Jun; 93():153-161. PubMed ID: 31235052
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching.
    Ku H; Jung Y; Jo M; Park S; Kim S; Yang D; Rhee K; An EM; Sohn J; Kwon K
    J Hazard Mater; 2016 Aug; 313():138-46. PubMed ID: 27060219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries.
    Chen X; Guo C; Ma H; Li J; Zhou T; Cao L; Kang D
    Waste Manag; 2018 May; 75():459-468. PubMed ID: 29366798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.