These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. In situ synthesis of bacterial cellulose/copper nanoparticles composite membranes with long-term antibacterial property. He W; Huang X; Zheng Y; Sun Y; Xie Y; Wang Y; Yue L J Biomater Sci Polym Ed; 2018 Dec; 29(17):2137-2153. PubMed ID: 30280964 [TBL] [Abstract][Full Text] [Related]
3. Novel Cu@SiO2/bacterial cellulose nanofibers: Preparation and excellent performance in antibacterial activity. Ma B; Huang Y; Zhu C; Chen C; Chen X; Fan M; Sun D Mater Sci Eng C Mater Biol Appl; 2016 May; 62():656-61. PubMed ID: 26952469 [TBL] [Abstract][Full Text] [Related]
4. Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. Jia B; Mei Y; Cheng L; Zhou J; Zhang L ACS Appl Mater Interfaces; 2012 Jun; 4(6):2897-902. PubMed ID: 22680307 [TBL] [Abstract][Full Text] [Related]
5. Development and antibacterial activities of bacterial cellulose/graphene oxide-CuO nanocomposite films. Xie YY; Hu XH; Zhang YW; Wahid F; Chu LQ; Jia SR; Zhong C Carbohydr Polym; 2020 Feb; 229():115456. PubMed ID: 31826434 [TBL] [Abstract][Full Text] [Related]
7. Synthesis, characterization and antimicrobial properties of grafted sugarcane bagasse/silver nanocomposites. Abdelwahab NA; Shukry N Carbohydr Polym; 2015 Jan; 115():276-84. PubMed ID: 25439896 [TBL] [Abstract][Full Text] [Related]
8. Plackett-Burman experimental design for bacterial cellulose-silica composites synthesis. Guzun AS; Stroescu M; Jinga SI; Voicu G; Grumezescu AM; Holban AM Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():280-8. PubMed ID: 25063120 [TBL] [Abstract][Full Text] [Related]
9. A novel polymer based on MtCu2+/cellulose acetate with antimicrobial activity. Bruna JE; Galotto MJ; Guarda A; Rodríguez F Carbohydr Polym; 2014 Feb; 102():317-23. PubMed ID: 24507287 [TBL] [Abstract][Full Text] [Related]
10. Preparation and properties of cellulose nanocomposite films with in situ generated copper nanoparticles using Terminalia catappa leaf extract. Muthulakshmi L; Rajini N; Nellaiah H; Kathiresan T; Jawaid M; Rajulu AV Int J Biol Macromol; 2017 Feb; 95():1064-1071. PubMed ID: 27984140 [TBL] [Abstract][Full Text] [Related]
11. Development of modified montmorillonite-bacterial cellulose nanocomposites as a novel substitute for burn skin and tissue regeneration. Sajjad W; Khan T; Ul-Islam M; Khan R; Hussain Z; Khalid A; Wahid F Carbohydr Polym; 2019 Feb; 206():548-556. PubMed ID: 30553356 [TBL] [Abstract][Full Text] [Related]
12. Improvement of antimicrobial activity of graphene oxide/bacterial cellulose nanocomposites through the electrostatic modification. Yang XN; Xue DD; Li JY; Liu M; Jia SR; Chu LQ; Wahid F; Zhang YM; Zhong C Carbohydr Polym; 2016 Jan; 136():1152-60. PubMed ID: 26572458 [TBL] [Abstract][Full Text] [Related]
13. Preparation and properties of cellulose/silver nanocomposite fibers. Li R; He M; Li T; Zhang L Carbohydr Polym; 2015 Jan; 115():269-75. PubMed ID: 25439895 [TBL] [Abstract][Full Text] [Related]
14. Multifunctional nanocomposites of chitosan, silver nanoparticles, copper nanoparticles and carbon nanotubes for water treatment: Antimicrobial characteristics. Morsi RE; Alsabagh AM; Nasr SA; Zaki MM Int J Biol Macromol; 2017 Apr; 97():264-269. PubMed ID: 28082228 [TBL] [Abstract][Full Text] [Related]
15. Bacterial cellulose films with ZnO nanoparticles and propolis extracts: Synergistic antimicrobial effect. Mocanu A; Isopencu G; Busuioc C; Popa OM; Dietrich P; Socaciu-Siebert L Sci Rep; 2019 Nov; 9(1):17687. PubMed ID: 31776397 [TBL] [Abstract][Full Text] [Related]
16. Copper-polyaniline nanocomposite: Role of physicochemical properties on the antimicrobial activity and genotoxicity evaluation. Bogdanović U; Dimitrijević S; Škapin SD; Popović M; Rakočević Z; Leskovac A; Petrović S; Stoiljković M; Vodnik V Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():49-60. PubMed ID: 30274082 [TBL] [Abstract][Full Text] [Related]
17. Nanomaterial with high antimicrobial efficacy--copper/polyaniline nanocomposite. Bogdanović U; Vodnik V; Mitrić M; Dimitrijević S; Škapin SD; Žunič V; Budimir M; Stoiljković M ACS Appl Mater Interfaces; 2015 Jan; 7(3):1955-66. PubMed ID: 25552193 [TBL] [Abstract][Full Text] [Related]
18. Nanofibrillated Cellulose and Copper Nanoparticles Embedded in Polyvinyl Alcohol Films for Antimicrobial Applications. Zhong T; Oporto GS; Jaczynski J; Jiang C Biomed Res Int; 2015; 2015():456834. PubMed ID: 26137482 [TBL] [Abstract][Full Text] [Related]
19. Chitosan-pluronic based Cu nanocomposite hydrogels for prototype antimicrobial applications. Jayaramudu T; Varaprasad K; Reddy KK; Pyarasani RD; Akbari-Fakhrabadi A; Amalraj J Int J Biol Macromol; 2020 Jan; 143():825-832. PubMed ID: 31715225 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and characterization of cellulose/silver nanocomposites from bioflocculant reducing agent. Muthulakshmi L; Rajini N; Varada Rajalu A; Siengchin S; Kathiresan T Int J Biol Macromol; 2017 Oct; 103():1113-1120. PubMed ID: 28528949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]