BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 29111103)

  • 1. Muscle-specific knockout of general control of amino acid synthesis 5 (GCN5) does not enhance basal or endurance exercise-induced mitochondrial adaptation.
    Dent JR; Martins VF; Svensson K; LaBarge SA; Schlenk NC; Esparza MC; Buckner EH; Meyer GA; Hamilton DL; Schenk S; Philp A
    Mol Metab; 2017 Dec; 6(12):1574-1584. PubMed ID: 29111103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined overexpression of SIRT1 and knockout of GCN5 in adult skeletal muscle does not affect glucose homeostasis or exercise performance in mice.
    Svensson K; Tahvilian S; Martins VF; Dent JR; Lemanek A; Barooni N; Greyslak K; McCurdy CE; Schenk S
    Am J Physiol Endocrinol Metab; 2020 Feb; 318(2):E145-E151. PubMed ID: 31794263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation following endurance exercise.
    Philp A; Chen A; Lan D; Meyer GA; Murphy AN; Knapp AE; Olfert IM; McCurdy CE; Marcotte GR; Hogan MC; Baar K; Schenk S
    J Biol Chem; 2011 Sep; 286(35):30561-30570. PubMed ID: 21757760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deacetylation of PGC-1α by SIRT1: importance for skeletal muscle function and exercise-induced mitochondrial biogenesis.
    Gurd BJ
    Appl Physiol Nutr Metab; 2011 Oct; 36(5):589-97. PubMed ID: 21888529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PGC-1alpha plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle.
    Geng T; Li P; Okutsu M; Yin X; Kwek J; Zhang M; Yan Z
    Am J Physiol Cell Physiol; 2010 Mar; 298(3):C572-9. PubMed ID: 20032509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of PGC-1α during acute exercise-induced autophagy and mitophagy in skeletal muscle.
    Vainshtein A; Tryon LD; Pauly M; Hood DA
    Am J Physiol Cell Physiol; 2015 May; 308(9):C710-9. PubMed ID: 25673772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1alpha protein expressions in rat skeletal muscle.
    Suwa M; Nakano H; Radak Z; Kumagai S
    Metabolism; 2008 Jul; 57(7):986-98. PubMed ID: 18555842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PGC-1α regulates mitochondrial properties beyond biogenesis with aging and exercise training.
    Halling JF; Jessen H; Nøhr-Meldgaard J; Buch BT; Christensen NM; Gudiksen A; Ringholm S; Neufer PD; Prats C; Pilegaard H
    Am J Physiol Endocrinol Metab; 2019 Sep; 317(3):E513-E525. PubMed ID: 31265325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle.
    Chen CCW; Erlich AT; Hood DA
    Skelet Muscle; 2018 Mar; 8(1):10. PubMed ID: 29549884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial biogenesis and PGC-1α deacetylation by chronic treadmill exercise: differential response in cardiac and skeletal muscle.
    Li L; Mühlfeld C; Niemann B; Pan R; Li R; Hilfiker-Kleiner D; Chen Y; Rohrbach S
    Basic Res Cardiol; 2011 Nov; 106(6):1221-34. PubMed ID: 21874557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Standardized Kaempferia parviflora Extract Enhances Exercise Performance Through Activation of Mitochondrial Biogenesis.
    Kim MB; Kim T; Kim C; Hwang JK
    J Med Food; 2018 Jan; 21(1):30-38. PubMed ID: 29125913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. p300 is not required for metabolic adaptation to endurance exercise training.
    LaBarge SA; Migdal CW; Buckner EH; Okuno H; Gertsman I; Stocks B; Barshop BA; Nalbandian SR; Philp A; McCurdy CE; Schenk S
    FASEB J; 2016 Apr; 30(4):1623-33. PubMed ID: 26712218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha.
    Gerhart-Hines Z; Rodgers JT; Bare O; Lerin C; Kim SH; Mostoslavsky R; Alt FW; Wu Z; Puigserver P
    EMBO J; 2007 Apr; 26(7):1913-23. PubMed ID: 17347648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exercise training attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle: role of PGC-1α.
    Kang C; Chung E; Diffee G; Ji LL
    Exp Gerontol; 2013 Nov; 48(11):1343-50. PubMed ID: 23994518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA-761 regulates mitochondrial biogenesis in mouse skeletal muscle in response to exercise.
    Xu Y; Zhao C; Sun X; Liu Z; Zhang J
    Biochem Biophys Res Commun; 2015 Nov; 467(1):103-8. PubMed ID: 26408907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PGC-1α regulates myonuclear accretion after moderate endurance training.
    Battey E; Furrer R; Ross J; Handschin C; Ochala J; Stroud MJ
    J Cell Physiol; 2022 Jan; 237(1):696-705. PubMed ID: 34322871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired exercise tolerance, mitochondrial biogenesis, and muscle fiber maintenance in miR-133a-deficient mice.
    Nie Y; Sato Y; Wang C; Yue F; Kuang S; Gavin TP
    FASEB J; 2016 Nov; 30(11):3745-3758. PubMed ID: 27458245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of Oxidative Stress by Antioxidant Supplementation Does Not Limit Muscle Mitochondrial Biogenesis or Endurance Capacity in Rats.
    Kim JC; Park GD; Kim SH
    J Nutr Sci Vitaminol (Tokyo); 2017; 63(5):277-283. PubMed ID: 29225311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xanthine oxidase inhibition attenuates skeletal muscle signaling following acute exercise but does not impair mitochondrial adaptations to endurance training.
    Wadley GD; Nicolas MA; Hiam DS; McConell GK
    Am J Physiol Endocrinol Metab; 2013 Apr; 304(8):E853-62. PubMed ID: 23462817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TIGAR regulates mitochondrial functions through SIRT1-PGC1α pathway and translocation of TIGAR into mitochondria in skeletal muscle.
    Geng J; Wei M; Yuan X; Liu Z; Wang X; Zhang D; Luo L; Wu J; Guo W; Qin ZH
    FASEB J; 2019 May; 33(5):6082-6098. PubMed ID: 30726106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.