These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 29111354)
1. Three GPI-anchored alkaline phosphatases are involved in the intoxication of Cry1Ca toxin to Spodoptera exigua larvae. Ren XL; Hu HY; Jiang WL; Ma XY; Ma YJ; Li GQ; Ma Y J Invertebr Pathol; 2018 Jan; 151():32-40. PubMed ID: 29111354 [TBL] [Abstract][Full Text] [Related]
2. RNA interference-mediated knockdown of three putative aminopeptidases N affects susceptibility of Spodoptera exigua larvae to Bacillus thuringiensis Cry1Ca. Ren XL; Ma Y; Cui JJ; Li GQ J Insect Physiol; 2014 Aug; 67():28-36. PubMed ID: 24932922 [TBL] [Abstract][Full Text] [Related]
3. A Spodoptera exigua cadherin serves as a putative receptor for Bacillus thuringiensis Cry1Ca toxin and shows differential enhancement of Cry1Ca and Cry1Ac toxicity. Ren XL; Chen RR; Zhang Y; Ma Y; Cui JJ; Han ZJ; Mu LL; Li GQ Appl Environ Microbiol; 2013 Sep; 79(18):5576-83. PubMed ID: 23835184 [TBL] [Abstract][Full Text] [Related]
4. Spodoptera frugiperda (J. E. Smith) Aminopeptidase N1 Is a Functional Receptor of the Bacillus thuringiensis Cry1Ca Toxin. Gómez I; Rodríguez-Chamorro DE; Flores-Ramírez G; Grande R; Zúñiga F; Portugal FJ; Sánchez J; Pacheco S; Bravo A; Soberón M Appl Environ Microbiol; 2018 Sep; 84(17):. PubMed ID: 29959247 [No Abstract] [Full Text] [Related]
5. Cadherin is involved in the action of Bacillus thuringiensis toxins Cry1Ac and Cry2Aa in the beet armyworm, Spodoptera exigua. Qiu L; Hou L; Zhang B; Liu L; Li B; Deng P; Ma W; Wang X; Fabrick JA; Chen L; Lei C J Invertebr Pathol; 2015 May; 127():47-53. PubMed ID: 25754522 [TBL] [Abstract][Full Text] [Related]
6. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes. Herrero S; Gechev T; Bakker PL; Moar WJ; de Maagd RA BMC Genomics; 2005 Jun; 6():96. PubMed ID: 15978131 [TBL] [Abstract][Full Text] [Related]
7. New insights on the role of alkaline phosphatase 2 from Spodoptera exigua (Hübner) in the action mechanism of Bt toxin Cry2Aa. Yuan X; Zhao M; Wei J; Zhang W; Wang B; Myint Khaing M; Liang G J Insect Physiol; 2017 Apr; 98():101-107. PubMed ID: 28034678 [TBL] [Abstract][Full Text] [Related]
8. Mutations in the Bacillus thuringiensis Cry1Ca toxin demonstrate the role of domains II and III in specificity towards Spodoptera exigua larvae. Herrero S; González-Cabrera J; Ferré J; Bakker PL; de Maagd RA Biochem J; 2004 Dec; 384(Pt 3):507-13. PubMed ID: 15320864 [TBL] [Abstract][Full Text] [Related]
9. A Tenebrio molitor GPI-anchored alkaline phosphatase is involved in binding of Bacillus thuringiensis Cry3Aa to brush border membrane vesicles. Zúñiga-Navarrete F; Gómez I; Peña G; Bravo A; Soberón M Peptides; 2013 Mar; 41():81-6. PubMed ID: 22743140 [TBL] [Abstract][Full Text] [Related]
10. Dissimilar Regulation of Antimicrobial Proteins in the Midgut of Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Toxins or Baculovirus. Crava CM; Jakubowska AK; Escriche B; Herrero S; Bel Y PLoS One; 2015; 10(5):e0125991. PubMed ID: 25993013 [TBL] [Abstract][Full Text] [Related]
11. Homologs to Cry toxin receptor genes in a de novo transcriptome and their altered expression in resistant Spodoptera litura larvae. Gong L; Wang H; Qi J; Han L; Hu M; Jurat-Fuentes JL J Invertebr Pathol; 2015 Jul; 129():1-6. PubMed ID: 25981133 [TBL] [Abstract][Full Text] [Related]
13. Biochemical characterization of digestive membrane-associated alkaline phosphatase from the velvet bean caterpillar Anticarsia gemmatalis. da Silva G; Costa Ramos LF; Dos Santos Seckler H; Mendonça Gomes F; Reis Cortines J; Ramos I; Dinis Anobom C; de Alcantara Machado E; Perpétua de Oliveira DM Arch Insect Biochem Physiol; 2019 Sep; 102(1):e21591. PubMed ID: 31257641 [TBL] [Abstract][Full Text] [Related]
14. Broad-spectrum cross-resistance in Spodoptera exigua from selection with a marginally toxic Cry protein. Hernández-Martínez P; Ferré J; Escriche B Pest Manag Sci; 2009 Jun; 65(6):645-50. PubMed ID: 19253909 [TBL] [Abstract][Full Text] [Related]
15. RNA interference of cadherin gene expression in Spodoptera exigua reveals its significance as a specific Bt target. Park Y; Kim Y J Invertebr Pathol; 2013 Nov; 114(3):285-91. PubMed ID: 24055650 [TBL] [Abstract][Full Text] [Related]
16. A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae. Fernandez LE; Aimanova KG; Gill SS; Bravo A; Soberón M Biochem J; 2006 Feb; 394(Pt 1):77-84. PubMed ID: 16255715 [TBL] [Abstract][Full Text] [Related]
17. Downregulation of Chilo suppressalis alkaline phosphatase genes associated with resistance to three transgenic Bacillus thuringiensis rice lines. Qiu L; Wang P; Wu T; Li B; Wang X; Lei C; Lin Y; Zhao J; Ma W Insect Mol Biol; 2018 Feb; 27(1):83-89. PubMed ID: 28940938 [TBL] [Abstract][Full Text] [Related]
18. Bacillus thuringiensis insecticidal crystal proteins affect lifespan and reproductive performance of Helicoverpa armigera and Spodoptera exigua adults. Zhang Y; Ma Y; Wan PJ; Mu LL; Li GQ J Econ Entomol; 2013 Apr; 106(2):614-21. PubMed ID: 23786046 [TBL] [Abstract][Full Text] [Related]
19. Localization of Bacillus thuringiensis Cry1A toxin-binding molecules in gypsy moth larval gut sections using fluorescence microscopy. Valaitis AP J Invertebr Pathol; 2011 Oct; 108(2):69-75. PubMed ID: 21767544 [TBL] [Abstract][Full Text] [Related]
20. Functional expression in insect cells of glycosylphosphatidylinositol-linked alkaline phosphatase from Aedes aegypti larval midgut: a Bacillus thuringiensis Cry4Ba toxin receptor. Dechklar M; Tiewsiri K; Angsuthanasombat C; Pootanakit K Insect Biochem Mol Biol; 2011 Mar; 41(3):159-66. PubMed ID: 21146607 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]