These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 29111548)
1. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Frisenda R; Navarro-Moratalla E; Gant P; Pérez De Lara D; Jarillo-Herrero P; Gorbachev RV; Castellanos-Gomez A Chem Soc Rev; 2018 Jan; 47(1):53-68. PubMed ID: 29111548 [TBL] [Abstract][Full Text] [Related]
2. Franckeite as a naturally occurring van der Waals heterostructure. Molina-Mendoza AJ; Giovanelli E; Paz WS; Niño MA; Island JO; Evangeli C; Aballe L; Foerster M; van der Zant HS; Rubio-Bollinger G; Agraït N; Palacios JJ; Pérez EM; Castellanos-Gomez A Nat Commun; 2017 Feb; 8():14409. PubMed ID: 28194037 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous assembly of van der Waals heterostructures into multiple nanodevices. Burzurí E; Vera-Hidalgo M; Giovanelli E; Villalva J; Castellanos-Gomez A; Pérez EM Nanoscale; 2018 May; 10(17):7966-7970. PubMed ID: 29616692 [TBL] [Abstract][Full Text] [Related]
4. Mixed-dimensional van der Waals heterostructures. Jariwala D; Marks TJ; Hersam MC Nat Mater; 2017 Feb; 16(2):170-181. PubMed ID: 27479211 [TBL] [Abstract][Full Text] [Related]
5. Convergent beam electron holography for analysis of van der Waals heterostructures. Latychevskaia T; Woods CR; Wang YB; Holwill M; Prestat E; Haigh SJ; Novoselov KS Proc Natl Acad Sci U S A; 2018 Jul; 115(29):7473-7478. PubMed ID: 29970422 [TBL] [Abstract][Full Text] [Related]
6. When 2D Materials Meet Molecules: Opportunities and Challenges of Hybrid Organic/Inorganic van der Waals Heterostructures. Gobbi M; Orgiu E; Samorì P Adv Mater; 2018 May; 30(18):e1706103. PubMed ID: 29441680 [TBL] [Abstract][Full Text] [Related]
7. Advancements and Challenges in the Integration of Indium Arsenide and Van der Waals Heterostructures. Cheng T; Meng Y; Luo M; Xian J; Luo W; Wang W; Yue F; Ho JC; Yu C; Chu J Small; 2024 Nov; 20(48):e2403129. PubMed ID: 39030967 [TBL] [Abstract][Full Text] [Related]
8. Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study. You B; Wang X; Zheng Z; Mi W Phys Chem Chem Phys; 2016 Mar; 18(10):7381-8. PubMed ID: 26899350 [TBL] [Abstract][Full Text] [Related]
9. MoS Sun Y; Zhong W; Wang Y; Xu X; Wang T; Wu L; Du Y ACS Appl Mater Interfaces; 2017 Oct; 9(39):34243-34255. PubMed ID: 28901126 [TBL] [Abstract][Full Text] [Related]
10. Artificial Synapse Based on van der Waals Heterostructures with Tunable Synaptic Functions for Neuromorphic Computing. He C; Tang J; Shang DS; Tang J; Xi Y; Wang S; Li N; Zhang Q; Lu JK; Wei Z; Wang Q; Shen C; Li J; Shen S; Shen J; Yang R; Shi D; Wu H; Wang S; Zhang G ACS Appl Mater Interfaces; 2020 Mar; 12(10):11945-11954. PubMed ID: 32052957 [TBL] [Abstract][Full Text] [Related]
11. Toward an Understanding of the Electric Field-Induced Electrostatic Doping in van der Waals Heterostructures: A First-Principles Study. Lu AK; Houssa M; Radu IP; Pourtois G ACS Appl Mater Interfaces; 2017 Mar; 9(8):7725-7734. PubMed ID: 28192656 [TBL] [Abstract][Full Text] [Related]
12. Band-Gap Landscape Engineering in Large-Scale 2D Semiconductor van der Waals Heterostructures. Zatko V; Dubois SM; Godel F; Carrétéro C; Sander A; Collin S; Galbiati M; Peiro J; Panciera F; Patriarche G; Brus P; Servet B; Charlier JC; Martin MB; Dlubak B; Seneor P ACS Nano; 2021 Apr; 15(4):7279-7289. PubMed ID: 33755422 [TBL] [Abstract][Full Text] [Related]
13. The hot pick-up technique for batch assembly of van der Waals heterostructures. Pizzocchero F; Gammelgaard L; Jessen BS; Caridad JM; Wang L; Hone J; Bøggild P; Booth TJ Nat Commun; 2016 Jun; 7():11894. PubMed ID: 27305833 [TBL] [Abstract][Full Text] [Related]
14. Strain Switching in van der Waals Heterostructures Triggered by a Spin-Crossover Metal-Organic Framework. Boix-Constant C; García-López V; Navarro-Moratalla E; Clemente-León M; Zafra JL; Casado J; Guinea F; Mañas-Valero S; Coronado E Adv Mater; 2022 Mar; 34(11):e2110027. PubMed ID: 35032055 [TBL] [Abstract][Full Text] [Related]
15. Van der Waals heterostructures for spintronics and opto-spintronics. Sierra JF; Fabian J; Kawakami RK; Roche S; Valenzuela SO Nat Nanotechnol; 2021 Aug; 16(8):856-868. PubMed ID: 34282312 [TBL] [Abstract][Full Text] [Related]
17. Superlattices based on van der Waals 2D materials. Ryu YK; Frisenda R; Castellanos-Gomez A Chem Commun (Camb); 2019 Sep; 55(77):11498-11510. PubMed ID: 31483427 [TBL] [Abstract][Full Text] [Related]
18. New Assembly-Free Bulk Layered Inorganic Vertical Heterostructures with Infrared and Optical Bandgaps. Antoniuk ER; Cheon G; Krishnapriyan A; Rehn DA; Zhou Y; Reed EJ Nano Lett; 2019 Jan; 19(1):142-149. PubMed ID: 30525679 [TBL] [Abstract][Full Text] [Related]
19. Magnetic Proximity Effect in Graphene/CrBr Tang C; Zhang Z; Lai S; Tan Q; Gao WB Adv Mater; 2020 Apr; 32(16):e1908498. PubMed ID: 32130750 [TBL] [Abstract][Full Text] [Related]
20. Interfacial Coupling and Modulation of van der Waals Heterostructures for Nanodevices. Zhao K; He D; Fu S; Bai Z; Miao Q; Huang M; Wang Y; Zhang X Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]