BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29111691)

  • 1. Optimal Recycling of Steel Scrap and Alloying Elements: Input-Output based Linear Programming Method with Its Application to End-of-Life Vehicles in Japan.
    Ohno H; Matsubae K; Nakajima K; Kondo Y; Nakamura S; Fukushima Y; Nagasaka T
    Environ Sci Technol; 2017 Nov; 51(22):13086-13094. PubMed ID: 29111691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous material flow analysis of nickel, chromium, and molybdenum used in alloy steel by means of input-output analysis.
    Nakajima K; Ohno H; Kondo Y; Matsubae K; Takeda O; Miki T; Nakamura S; Nagasaka T
    Environ Sci Technol; 2013 May; 47(9):4653-60. PubMed ID: 23528100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quality- and dilution losses in the recycling of ferrous materials from end-of-life passenger cars: input-output analysis under explicit consideration of scrap quality.
    Nakamura S; Kondo Y; Matsubae K; Nakajima K; Tasaki T; Nagasaka T
    Environ Sci Technol; 2012 Sep; 46(17):9266-73. PubMed ID: 22876977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying Recycling and Losses of Cr and Ni in Steel Throughout Multiple Life Cycles Using MaTrace-Alloy.
    Nakamura S; Kondo Y; Nakajima K; Ohno H; Pauliuk S
    Environ Sci Technol; 2017 Sep; 51(17):9469-9476. PubMed ID: 28806506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term strategies for increased recycling of automotive aluminum and its alloying elements.
    Løvik AN; Modaresi R; Müller DB
    Environ Sci Technol; 2014 Apr; 48(8):4257-65. PubMed ID: 24655476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MaTrace: tracing the fate of materials over time and across products in open-loop recycling.
    Nakamura S; Kondo Y; Kagawa S; Matsubae K; Nakajima K; Nagasaka T
    Environ Sci Technol; 2014 Jul; 48(13):7207-14. PubMed ID: 24872019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fuzzy risk explicit interval linear programming model for end-of-life vehicle recycling planning in the EU.
    Simic V
    Waste Manag; 2015 Jan; 35():265-82. PubMed ID: 25304165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid LCA of a design for disassembly technology: active disassembling fasteners of hydrogen storage alloys for home appliances.
    Nakamura S; Yamasue E
    Environ Sci Technol; 2010 Jun; 44(12):4402-8. PubMed ID: 20476783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interval linear programming model for long-term planning of vehicle recycling in the Republic of Serbia under uncertainty.
    Simic V; Dimitrijevic B
    Waste Manag Res; 2015 Feb; 33(2):114-29. PubMed ID: 25649401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of end-of-life vehicle recycling: Remanufacturing waste sheet steel into mesh sheet.
    Abdullah ZT
    PLoS One; 2021; 16(12):e0261079. PubMed ID: 34874959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury-impacted scrap metal: Source and nature of the mercury.
    Finster ME; Raymond MR; Scofield MA; Smith KP
    J Environ Manage; 2015 Sep; 161():303-308. PubMed ID: 26197424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainable design for automotive products: dismantling and recycling of end-of-life vehicles.
    Tian J; Chen M
    Waste Manag; 2014 Feb; 34(2):458-67. PubMed ID: 24326159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are scarce metals in cars functionally recycled?
    Andersson M; Ljunggren Söderman M; Sandén BA
    Waste Manag; 2017 Feb; 60():407-416. PubMed ID: 27395755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper Recycling Flow Model for the United States Economy: Impact of Scrap Quality on Potential Energy Benefit.
    Wang T; Berrill P; Zimmerman JB; Hertwich EG
    Environ Sci Technol; 2021 Apr; 55(8):5485-5495. PubMed ID: 33783185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental and economic benefits of electric, hybrid and conventional vehicle treatment: A case study of Lithuania.
    Petrauskienė K; Tverskytė R; Dvarionienė J
    Waste Manag; 2022 Mar; 140():55-62. PubMed ID: 35066452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The development and prospects of the end-of-life vehicle recycling system in Taiwan.
    Chen KC; Huang SH; Lian IW
    Waste Manag; 2010; 30(8-9):1661-9. PubMed ID: 20382516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. More resource efficient recycling of copper and copper alloys by using X-ray fluorescence sorting systems: An investigation on the metallic fraction of mixed foundry residues.
    Kölking M; Flamme S; Heinrichs S; Schmalbein N; Jacob M
    Waste Manag Res; 2024 Apr; ():734242X241241601. PubMed ID: 38616533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anthropogenic nickel cycle: insights into use, trade, and recycling.
    Reck BK; Müller DB; Rostkowski K; Graedel TE
    Environ Sci Technol; 2008 May; 42(9):3394-400. PubMed ID: 18522124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash.
    Allegrini E; Vadenbo C; Boldrin A; Astrup TF
    J Environ Manage; 2015 Mar; 151():132-43. PubMed ID: 25555136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recycling Potentials of Precious Metals from End-of-Life Vehicle Parts by Selective Dismantling.
    Xu G; Yano J; Sakai SI
    Environ Sci Technol; 2019 Jan; 53(2):733-742. PubMed ID: 30532963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.