BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 29111707)

  • 1. Lysine-Derived Protein-Bound Heyns Compounds in Bakery Products.
    Treibmann S; Hellwig A; Hellwig M; Henle T
    J Agric Food Chem; 2017 Dec; 65(48):10562-10570. PubMed ID: 29111707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of peptide-bound Heyns compounds.
    Krause R; Schlegel K; Schwarzer E; Henle T
    J Agric Food Chem; 2008 Apr; 56(7):2522-7. PubMed ID: 18318498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of Protein-Bound Maillard Reaction Products during the Storage of Manuka Honey.
    Thierig M; Siegel E; Henle T
    J Agric Food Chem; 2023 Oct; 71(41):15261-15269. PubMed ID: 37796058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unique Pattern of Protein-Bound Maillard Reaction Products in Manuka (Leptospermum scoparium) Honey.
    Hellwig M; Rückriemen J; Sandner D; Henle T
    J Agric Food Chem; 2017 May; 65(17):3532-3540. PubMed ID: 28415841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigations on the formation of Maillard reaction products in sweet cookies made of different cereals.
    Žilić S; Aktağ IG; Dodig D; Gökmen V
    Food Res Int; 2021 Jun; 144():110352. PubMed ID: 34053545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced glycation endproducts in food and their effects on health.
    Poulsen MW; Hedegaard RV; Andersen JM; de Courten B; Bügel S; Nielsen J; Skibsted LH; Dragsted LO
    Food Chem Toxicol; 2013 Oct; 60():10-37. PubMed ID: 23867544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of variations in the acrylamide and N(ε) -(carboxymethyl) lysine contents in cookies during baking.
    Cheng L; Jin C; Zhang Y
    J Food Sci; 2014 May; 79(5):T1030-8. PubMed ID: 24734960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigations on the Maillard Reaction in Sesame ( Sesamum indicum L.) Seeds Induced by Roasting.
    Berk E; Hamzalıoğlu A; Gökmen V
    J Agric Food Chem; 2019 May; 67(17):4923-4930. PubMed ID: 30969769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlating enzymatic browning inhibition and antioxidant ability of Maillard reaction products derived from different amino acids.
    Xu H; Zhang X; Karangwa E; Xia S
    J Sci Food Agric; 2017 Sep; 97(12):4210-4218. PubMed ID: 28244161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Okara promoted acrylamide and carboxymethyl-lysine formation in bakery products.
    Palermo M; Fiore A; Fogliano V
    J Agric Food Chem; 2012 Oct; 60(40):10141-6. PubMed ID: 22998601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytochemical-Rich Antioxidant Extracts of Vaccinium Vitis-idaea L. Leaves Inhibit the Formation of Toxic Maillard Reaction Products in Food Models.
    Račkauskienė I; Pukalskas A; Fiore A; Troise AD; Venskutonis PR
    J Food Sci; 2019 Dec; 84(12):3494-3503. PubMed ID: 31737914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Comparison of the Contents of Sugar, Amadori, and Heyns Compounds in Fresh and Black Garlic.
    Yuan H; Sun L; Chen M; Wang J
    J Food Sci; 2016 Jul; 81(7):C1662-8. PubMed ID: 27300762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid characterization of Maillard reaction products in heat-treated honey by nanoelectrospray ionization mass spectrometry.
    Qu L; Li Y; Wang Y; Wu D; Ning F; Nie Z; Luo L
    Food Chem; 2023 Sep; 419():136010. PubMed ID: 37015165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel α-Oxoamide Advanced-Glycation Endproducts within the N
    Baldensperger T; Jost T; Zipprich A; Glomb MA
    J Agric Food Chem; 2018 Feb; 66(8):1898-1906. PubMed ID: 29436827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the Formation of 3-Deoxyglucosone- and Methylglyoxal-Derived Hydroimidazolones of Creatine during Heat Treatment of Meat.
    Treibmann S; Spengler F; Degen J; Löbner J; Henle T
    J Agric Food Chem; 2019 May; 67(20):5874-5881. PubMed ID: 31050431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics and antioxidant activity of Maillard reaction products from psicose-lysine and fructose-lysine model systems.
    Zeng Y; Zhang X; Guan Y; Sun Y
    J Food Sci; 2011 Apr; 76(3):C398-403. PubMed ID: 21535806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyl radical induced by lipid in Maillard reaction model system promotes diet-derived N(ε)-carboxymethyllysine formation.
    Han L; Li L; Li B; Zhao D; Li Y; Xu Z; Liu G
    Food Chem Toxicol; 2013 Oct; 60():536-41. PubMed ID: 23959106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free and Protein-Bound Maillard Reaction Products in Beer: Method Development and a Survey of Different Beer Types.
    Hellwig M; Witte S; Henle T
    J Agric Food Chem; 2016 Sep; 64(38):7234-43. PubMed ID: 27594145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The quantification of free Amadori compounds and amino acids allows to model the bound Maillard reaction products formation in soybean products.
    Troise AD; Wiltafsky M; Fogliano V; Vitaglione P
    Food Chem; 2018 May; 247():29-38. PubMed ID: 29277225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N epsilon-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins.
    Reddy S; Bichler J; Wells-Knecht KJ; Thorpe SR; Baynes JW
    Biochemistry; 1995 Aug; 34(34):10872-8. PubMed ID: 7662668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.