These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 29111969)

  • 1. Resistance mechanisms of linezolid-nonsusceptible enterococci in Korea: low rate of 23S rRNA mutations in Enterococcus faecium.
    Lee SM; Huh HJ; Song DJ; Shim HJ; Park KS; Kang CI; Ki CS; Lee NY
    J Med Microbiol; 2017 Dec; 66(12):1730-1735. PubMed ID: 29111969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of oxazolidinone and phenicol resistant enterococcal isolates from duck feces and carcasses.
    Na SH; Moon DC; Choi MJ; Oh SJ; Jung DY; Kang HY; Hyun BH; Lim SK
    Int J Food Microbiol; 2019 Mar; 293():53-59. PubMed ID: 30640000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high incidence and coexistence of multiresistance genes cfr and optrA among linezolid-resistant enterococci isolated from a teaching hospital in Wenzhou, China.
    Zhang Y; Dong G; Li J; Chen L; Liu H; Bi W; Lu H; Zhou T
    Eur J Clin Microbiol Infect Dis; 2018 Aug; 37(8):1441-1448. PubMed ID: 29909468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linezolid-resistant clinical isolates of enterococci and Staphylococcus cohnii from a multicentre study in China: molecular epidemiology and resistance mechanisms.
    Chen H; Wu W; Ni M; Liu Y; Zhang J; Xia F; He W; Wang Q; Wang Z; Cao B; Wang H
    Int J Antimicrob Agents; 2013 Oct; 42(4):317-21. PubMed ID: 23880167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of Linezolid-Resistant
    Kim YB; Yoon S; Seo KW; Shim JB; Noh EB; Lee YJ
    Microb Drug Resist; 2021 Oct; 27(10):1443-1449. PubMed ID: 34297629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linezolid-resistant enterococci in Polish hospitals: species, clonality and determinants of linezolid resistance.
    Gawryszewska I; Żabicka D; Hryniewicz W; Sadowy E
    Eur J Clin Microbiol Infect Dis; 2017 Jul; 36(7):1279-1286. PubMed ID: 28197728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linezolid resistance in Enterococcus faecium and Enterococcus faecalis from hospitalized patients in Ireland: high prevalence of the MDR genes optrA and poxtA in isolates with diverse genetic backgrounds.
    Egan SA; Shore AC; O'Connell B; Brennan GI; Coleman DC
    J Antimicrob Chemother; 2020 Jul; 75(7):1704-1711. PubMed ID: 32129849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolving oxazolidinone resistance mechanisms in a worldwide collection of enterococcal clinical isolates: results from the SENTRY Antimicrobial Surveillance Program.
    Deshpande LM; Castanheira M; Flamm RK; Mendes RE
    J Antimicrob Chemother; 2018 Sep; 73(9):2314-2322. PubMed ID: 29878213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of the optrA gene in Enterococcus isolates at a tertiary care hospital in China.
    Zhou W; Gao S; Xu H; Zhang Z; Chen F; Shen H; Zhang C
    J Glob Antimicrob Resist; 2019 Jun; 17():180-186. PubMed ID: 30641287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of novel oxazolidinone and phenicol resistance gene optrA in enterococcal isolates from food animals and animal carcasses.
    Tamang MD; Moon DC; Kim SR; Kang HY; Lee K; Nam HM; Jang GC; Lee HS; Jung SC; Lim SK
    Vet Microbiol; 2017 Mar; 201():252-256. PubMed ID: 28284617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin.
    Wang Y; Lv Y; Cai J; Schwarz S; Cui L; Hu Z; Zhang R; Li J; Zhao Q; He T; Wang D; Wang Z; Shen Y; Li Y; Feßler AT; Wu C; Yu H; Deng X; Xia X; Shen J
    J Antimicrob Chemother; 2015 Aug; 70(8):2182-90. PubMed ID: 25977397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of linezolid resistance due to the optrA gene in Enterococcus faecalis from poultry meat from the American continent (Colombia).
    Cavaco LM; Bernal JF; Zankari E; Léon M; Hendriksen RS; Perez-Gutierrez E; Aarestrup FM; Donado-Godoy P
    J Antimicrob Chemother; 2017 Mar; 72(3):678-683. PubMed ID: 27999039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ZAAPS programme results for 2016: an activity and spectrum analysis of linezolid using clinical isolates from medical centres in 42 countries.
    Mendes RE; Deshpande L; Streit JM; Sader HS; Castanheira M; Hogan PA; Flamm RK
    J Antimicrob Chemother; 2018 Jul; 73(7):1880-1887. PubMed ID: 29659858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LRE-Finder, a Web tool for detection of the 23S rRNA mutations and the optrA, cfr, cfr(B) and poxtA genes encoding linezolid resistance in enterococci from whole-genome sequences.
    Hasman H; Clausen PTLC; Kaya H; Hansen F; Knudsen JD; Wang M; Holzknecht BJ; Samulioniené J; Røder BL; Frimodt-Møller N; Lund O; Hammerum AM
    J Antimicrob Chemother; 2019 Jun; 74(6):1473-1476. PubMed ID: 30863844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Epidemiology and Mechanisms of 43 Low-Level Linezolid-Resistant
    Hua R; Xia Y; Wu W; Yang M; Yan J
    Ann Lab Med; 2019 Jan; 39(1):36-42. PubMed ID: 30215228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel multiresistance cfr plasmids in linezolid-resistant methicillin-resistant Staphylococcus epidermidis and vancomycin-resistant Enterococcus faecium (VRE) from a hospital outbreak: co-location of cfr and optrA in VRE.
    Lazaris A; Coleman DC; Kearns AM; Pichon B; Kinnevey PM; Earls MR; Boyle B; O'Connell B; Brennan GI; Shore AC
    J Antimicrob Chemother; 2017 Dec; 72(12):3252-3257. PubMed ID: 28961986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance mechanisms and clinical characteristics of linezolid-resistant Enterococcus faecium isolates: A single-centre study in South Korea.
    Cho SY; Kim HM; Chung DR; Kim SH; Huh HJ; Kang CI; Peck KR; Lee NY; Song JH
    J Glob Antimicrob Resist; 2018 Mar; 12():44-47. PubMed ID: 28941790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interregional spread in Spain of linezolid-resistant Enterococcus spp. isolates carrying the optrA and poxtA genes.
    Moure Z; Lara N; Marín M; Sola-Campoy PJ; Bautista V; Gómez-Bertomeu F; Gómez-Dominguez C; Pérez-Vázquez M; Aracil B; Campos J; Cercenado E; Oteo-Iglesias J;
    Int J Antimicrob Agents; 2020 Jun; 55(6):105977. PubMed ID: 32330583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of molecular epidemiological characteristics and antimicrobial susceptibility of vancomycin-resistant and linezolid-resistant Enterococcus in China.
    Pan P; Sun L; Shi X; Huang X; Yin Y; Pan B; Hu L; Shen Q
    BMC Med Genomics; 2024 Jul; 17(1):174. PubMed ID: 38951840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hospital outbreak of linezolid-resistant and vancomycin-resistant ST80 Enterococcus faecium harbouring an optrA-encoding conjugative plasmid investigated by whole-genome sequencing.
    Egan SA; Corcoran S; McDermott H; Fitzpatrick M; Hoyne A; McCormack O; Cullen A; Brennan GI; O'Connell B; Coleman DC
    J Hosp Infect; 2020 Aug; 105(4):726-735. PubMed ID: 32439548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.