These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29112133)

  • 1. Characterization of Sheep Wool as a Sustainable Material for Acoustic Applications.
    Del Rey R; Uris A; Alba J; Candelas P
    Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29112133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innovative Use of Sheep Wool for Obtaining Materials with Improved Sound-Absorbing Properties.
    Borlea Mureşan SI; Tiuc AE; Nemeş O; Vermeşan H; Vasile O
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32033091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustainable Sheep Wool/Soy Protein Biocomposites for Sound Absorption.
    Urdanpilleta M; Leceta I; Guerrero P; de la Caba K
    Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic Performance of Sound Absorbing Materials Produced from Wool of Local Mountain Sheep.
    Kobiela-Mendrek K; Bączek M; Broda J; Rom M; Espelien I; Klepp I
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composite Eco-Friendly Sound Absorbing Materials Made of Recycled Textile Waste and Biopolymers.
    Rubino C; Bonet Aracil M; Gisbert-Payá J; Liuzzi S; Stefanizzi P; Zamorano Cantó M; Martellotta F
    Materials (Basel); 2019 Dec; 12(23):. PubMed ID: 31816936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sound Absorption Properties of Perforated Recycled Polyurethane Foams Reinforced with Woven Fabric.
    Atiénzar-Navarro R; Del Rey R; Jesús A; Sánchez-Morcillo VJ; Picó R
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32050724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing and modelling the sound absorption of the cellulose acetate fibers coming from cigarette butts.
    Maderuelo-Sanz R
    J Environ Health Sci Eng; 2021 Jun; 19(1):1075-1086. PubMed ID: 34150296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the full anisotropic flow resistivity tensor for multiple glass wool and melamine foam samples.
    Van der Kelen C; Göransson P
    J Acoust Soc Am; 2013 Dec; 134(6):4659. PubMed ID: 25669278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustainable Lightweight Insulation Materials from Textile-Based Waste for the Automobile Industry.
    Cai Z; Al Faruque MA; Kiziltas A; Mielewski D; Naebe M
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33807970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Sheep Wool-Based Composites for Building Insulation.
    Dénes TO; Iştoan R; Tǎmaş-Gavrea DR; Manea DL; Hegyi A; Popa F; Vasile O
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Blend Composition on Barrier Properties of Insulating Mats Produced from Local Wool and Waste Bast Fibres.
    Kicińska-Jakubowska A; Broda J; Zimniewska M; Bączek M; Mańkowski J
    Materials (Basel); 2023 Jan; 16(1):. PubMed ID: 36614798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wideband characterization of the complex wave number and characteristic impedance of sound absorbers.
    Salissou Y; Panneton R
    J Acoust Soc Am; 2010 Nov; 128(5):2868-76. PubMed ID: 21110582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sound transmission loss of porous materials in ducts with embedded periodic scatterers.
    Jena DP; Qiu X
    J Acoust Soc Am; 2020 Feb; 147(2):978. PubMed ID: 32113265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waste Mineral Wool and Its Opportunities-A Review.
    Yap ZS; Khalid NHA; Haron Z; Mohamed A; Tahir MM; Hasyim S; Saggaff A
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurements and empirical model of the acoustic properties of reticulated vitreous carbon.
    Muehleisena RT; Beamer CW; Tinianov BD
    J Acoust Soc Am; 2005 Feb; 117(2):536-44. PubMed ID: 15759675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hair sheep genetic resources and their contribution to diversified small ruminant production in the United States.
    Wildeus S
    J Anim Sci; 1997 Mar; 75(3):630-40. PubMed ID: 9078477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of life-cycle efficiency of lamb and wool production for genetic levels of component traits and alternative management options.
    Wang CT; Dickerson GE
    J Anim Sci; 1991 Nov; 69(11):4324-37. PubMed ID: 1752808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffuse reflectance spectroscopy of fibrous proteins.
    Millington KR
    Amino Acids; 2012 Sep; 43(3):1277-85. PubMed ID: 22218994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biologically based coefficients for partitioning lamb and wool production costs.
    Blackburn HD; Pittroff W
    J Anim Sci; 1999 Jun; 77(6):1353-63. PubMed ID: 10375212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance Characterization of Broad Band Sustainable Sound Absorbers Made of Almond Skins.
    Liuzzi S; Rubino C; Stefanizzi P; Martellotta F
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33271849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.