These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 29112150)
1. Fabrication of In Vitro Cancer Microtissue Array on Fibroblast-Layered Nanofibrous Membrane by Inkjet Printing. Park TM; Kang D; Jang I; Yun WS; Shim JH; Jeong YH; Kwak JY; Yoon S; Jin S Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29112150 [TBL] [Abstract][Full Text] [Related]
2. 3D tumor microtissues as an in vitro testing platform for microenvironmentally-triggered drug delivery systems. Brancato V; Gioiella F; Profeta M; Imparato G; Guarnieri D; Urciuolo F; Melone P; Netti PA Acta Biomater; 2017 Jul; 57():47-58. PubMed ID: 28483691 [TBL] [Abstract][Full Text] [Related]
3. Microcontact printing of polydopamine on thermally expandable hydrogels for controlled cell adhesion and delivery of geometrically defined microtissues. Lee YB; Kim SJ; Kim EM; Byun H; Chang HK; Park J; Choi YS; Shin H Acta Biomater; 2017 Oct; 61():75-87. PubMed ID: 28760620 [TBL] [Abstract][Full Text] [Related]
5. High-throughput scaffold-free microtissues through 3D printing. Boyer CJ; Ballard DH; Barzegar M; Winny Yun J; Woerner JE; Ghali GE; Boktor M; Wang Y; Steven Alexander J 3D Print Med; 2018 Nov; 4(1):9. PubMed ID: 30649646 [TBL] [Abstract][Full Text] [Related]
6. An in vitro 3D model using collagen coated gelatin nanofibers for studying breast cancer metastasis. Janani G; Pillai MM; Selvakumar R; Bhattacharyya A; Sabarinath C Biofabrication; 2017 Feb; 9(1):015016. PubMed ID: 28000609 [TBL] [Abstract][Full Text] [Related]
7. A microfabricated magnetic actuation device for mechanical conditioning of arrays of 3D microtissues. Xu F; Zhao R; Liu AS; Metz T; Shi Y; Bose P; Reich DH Lab Chip; 2015 Jun; 15(11):2496-503. PubMed ID: 25959132 [TBL] [Abstract][Full Text] [Related]
8. Fibroblast elongation and dendritic extensions in constrained versus unconstrained microtissues. Dean DM; Rago AP; Morgan JR Cell Motil Cytoskeleton; 2009 Mar; 66(3):129-41. PubMed ID: 19170224 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional microtissue assay for high-throughput cytotoxicity of nanoparticles. Luo Y; Wang C; Hossain M; Qiao Y; Ma L; An J; Su M Anal Chem; 2012 Aug; 84(15):6731-8. PubMed ID: 22747067 [TBL] [Abstract][Full Text] [Related]
10. Matrix metalloproteinase-inspired suicidal treatments of diabetic ulcers with siRNA-decorated nanofibrous meshes. Kim HS; Yoo HS Gene Ther; 2013 Apr; 20(4):378-85. PubMed ID: 22717742 [TBL] [Abstract][Full Text] [Related]
11. Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration. Alamein MA; Stephens S; Liu Q; Skabo S; Warnke PH Tissue Eng Part C Methods; 2013 Jun; 19(6):458-72. PubMed ID: 23102268 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of patterned nanofibrous mats using direct-write electrospinning. Lee J; Lee SY; Jang J; Jeong YH; Cho DW Langmuir; 2012 May; 28(18):7267-75. PubMed ID: 22512407 [TBL] [Abstract][Full Text] [Related]
13. Cell micropatterning on an albumin-based substrate using an inkjet printing technique. Yamazoe H; Tanabe T J Biomed Mater Res A; 2009 Dec; 91(4):1202-9. PubMed ID: 19148930 [TBL] [Abstract][Full Text] [Related]
14. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Gautam S; Chou CF; Dinda AK; Potdar PD; Mishra NC Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():402-9. PubMed ID: 24268275 [TBL] [Abstract][Full Text] [Related]
15. Gelatin-GAG electrospun nanofibrous scaffold for skin tissue engineering: fabrication and modeling of process parameters. Pezeshki-Modaress M; Mirzadeh H; Zandi M Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():704-12. PubMed ID: 25579974 [TBL] [Abstract][Full Text] [Related]
16. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542 [TBL] [Abstract][Full Text] [Related]
17. 3D is not enough: Building up a cell instructive microenvironment for tumoral stroma microtissues. Brancato V; Garziano A; Gioiella F; Urciuolo F; Imparato G; Panzetta V; Fusco S; Netti PA Acta Biomater; 2017 Jan; 47():1-13. PubMed ID: 27721010 [TBL] [Abstract][Full Text] [Related]
18. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Gautam S; Dinda AK; Mishra NC Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1228-35. PubMed ID: 23827565 [TBL] [Abstract][Full Text] [Related]
19. Magnetically controllable 3D microtissues based on magnetic microcryogels. Liu W; Li Y; Feng S; Ning J; Wang J; Gou M; Chen H; Xu F; Du Y Lab Chip; 2014 Aug; 14(15):2614-25. PubMed ID: 24736804 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration. Chandrasekaran AR; Venugopal J; Sundarrajan S; Ramakrishna S Biomed Mater; 2011 Feb; 6(1):015001. PubMed ID: 21205999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]