BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29112160)

  • 1. Reclamation of Marine Chitinous Materials for the Production of α-Glucosidase Inhibitors via Microbial Conversion.
    Nguyen VB; Wang SL
    Mar Drugs; 2017 Nov; 15(11):. PubMed ID: 29112160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of Fishery Processing By-Product Squid Pens for α-Glucosidase Inhibitors Production by Paenibacillus sp.
    Nguyen VB; Nguyen AD; Wang SL
    Mar Drugs; 2017 Aug; 15(9):. PubMed ID: 28867763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production and Bioactivity-Guided Isolation of Antioxidants with α-Glucosidase Inhibitory and Anti-NO Properties from Marine Chitinous Materials.
    Nguyen VB; Nguyen TH; Doan CT; Tran TN; Nguyen AD; Kuo YH; Wang SL
    Molecules; 2018 May; 23(5):. PubMed ID: 29747410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of Squid Pens to Chitosanases and Proteases via Paenibacillus sp. TKU042.
    Doan CT; Tran TN; Nguyen VB; Nguyen AD; Wang SL
    Mar Drugs; 2018 Mar; 16(3):. PubMed ID: 29517987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of α-Glucosidase Inhibitors by a Newly Isolated Bacterium, Paenibacillus sp. TKU042 and Its Effect on Reducing Plasma Glucose in a Mouse Model.
    Nguyen VB; Nguyen AD; Kuo YH; Wang SL
    Int J Mol Sci; 2017 Mar; 18(4):. PubMed ID: 28346347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteases Production and Chitin Preparation from the Liquid Fermentation of Chitinous Fishery By-Products by
    Lee DH; Doan CT; Tran TN; Nguyen VB; Nguyen AD; Wang CL; Wang SL
    Mar Drugs; 2021 Aug; 19(9):. PubMed ID: 34564139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of Squid Pen to Homogentisic Acid via Paenibacillus sp. TKU036 and the Antioxidant and Anti-Inflammatory Activities of Homogentisic Acid.
    Wang SL; Li HT; Zhang LJ; Lin ZH; Kuo YH
    Mar Drugs; 2016 Oct; 14(10):. PubMed ID: 27754313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of a Thermostable Chitosanase from Shrimp Heads via
    Doan CT; Tran TN; Nguyen VB; Nguyen AD; Wang SL
    Mar Drugs; 2019 Apr; 17(4):. PubMed ID: 30974812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-α-Glucosidase Activity by a Protease from
    Doan CT; Tran TN; Nguyen MT; Nguyen VB; Nguyen AD; Wang SL
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30769933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of Seafood Processing By-Products for Production of Proteases by
    Doan CT; Tran TN; Nguyen VB; Nguyen AD; Wang SL
    Mar Drugs; 2020 Nov; 18(11):. PubMed ID: 33233577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reclamation of Marine Chitinous Materials for Chitosanase Production via Microbial Conversion by
    Doan CT; Tran TN; Nguyen VB; Nguyen AD; Wang SL
    Mar Drugs; 2018 Nov; 16(11):. PubMed ID: 30400216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of α-Glucosidase Inhibitors from Marine Microorganisms: Optimization of Culture Conditions and Medium Composition.
    Trang NTH; Tang DYY; Chew KW; Linh NT; Hoang LT; Cuong NT; Yen HT; Thao NT; Trung NT; Show PL; Tuyen DT
    Mol Biotechnol; 2021 Nov; 63(11):1004-1015. PubMed ID: 34185249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of sub- and supercritical water treatments on the physicochemical properties of crab shell chitin and its enzymatic degradation.
    Osada M; Miura C; Nakagawa YS; Kaihara M; Nikaido M; Totani K
    Carbohydr Polym; 2015 Dec; 134():718-25. PubMed ID: 26428177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory activity evaluation and mechanistic studies of tetracyclic oxindole derivatives as α-glucosidase inhibitors.
    Sun H; Zhang Y; Ding W; Zhao X; Song X; Wang D; Li Y; Han K; Yang Y; Ma Y; Wang R; Wang D; Yu P
    Eur J Med Chem; 2016 Nov; 123():365-378. PubMed ID: 27487567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity.
    Satoh T; Igarashi M; Yamada S; Takahashi N; Watanabe K
    J Ethnopharmacol; 2015 Feb; 161():147-55. PubMed ID: 25523370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilisation of chitinous materials in pigment adsorption.
    Wang SL; Chen YC; Yen YH; Liang TW
    Food Chem; 2012 Dec; 135(3):1134-40. PubMed ID: 22953835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chitin extraction from crab shells by Bacillus bacteria. Biological activities of fermented crab supernatants.
    Hajji S; Ghorbel-Bellaaj O; Younes I; Jellouli K; Nasri M
    Int J Biol Macromol; 2015 Aug; 79():167-73. PubMed ID: 25910648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. α-Glucosidase Inhibitory Activity of Fermented Okara Broth Started with the Strain
    Gao Y; Bian W; Fang Y; Du P; Liu X; Zhao X; Li F
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring new marine bacterial species, Alcaligenes faecalis Alca F2018 valued for bioconversion of shrimp chitin to chitosan for concomitant biotechnological applications.
    Amer OA; Ali SS; Azab M; El-Shouny WA; Sun J; Mahmoud YA
    Int J Biol Macromol; 2022 Jan; 196():35-45. PubMed ID: 34920076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of Thermophilic Chitinase by
    Doan CT; Tran TN; Wang SL
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34577952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.