BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29112160)

  • 21. α-Glucosidase and α-amylase inhibitors from Myrcia spp.: a stronger alternative to acarbose?
    Figueiredo-González M; Grosso C; Valentão P; Andrade PB
    J Pharm Biomed Anal; 2016 Jan; 118():322-327. PubMed ID: 26590699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Exochitinase with
    Tran TN; Doan CT; Nguyen MT; Nguyen VB; Vo TPK; Nguyen AD; Wang SL
    Polymers (Basel); 2019 Sep; 11(10):. PubMed ID: 31574975
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Syntheses of new 3-thiazolyl coumarin derivatives, in vitro α-glucosidase inhibitory activity, and molecular modeling studies.
    Salar U; Taha M; Khan KM; Ismail NH; Imran S; Perveen S; Gul S; Wadood A
    Eur J Med Chem; 2016 Oct; 122():196-204. PubMed ID: 27371923
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling of cooked starch digestion process using recombinant human pancreatic α-amylase and maltase-glucoamylase for in vitro evaluation of α-glucosidase inhibitors.
    Cao X; Zhang C; Dong Y; Geng P; Bai F; Bai G
    Carbohydr Res; 2015 Sep; 414():15-21. PubMed ID: 26162745
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of α-glucosidase by new prenylated flavonoids from euphorbia hirta L. herb.
    Sheliya MA; Rayhana B; Ali A; Pillai KK; Aeri V; Sharma M; Mir SR
    J Ethnopharmacol; 2015 Dec; 176():1-8. PubMed ID: 26477374
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation of chitosan from waste shrimp shells fermented with Paenibacillus jamilae BAT1.
    Taser B; Ozkan H; Adiguzel A; Orak T; Baltaci MO; Taskin M
    Int J Biol Macromol; 2021 Jul; 183():1191-1199. PubMed ID: 33989684
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A process for complete biodegradation of shrimp waste by a novel marine isolate Paenibacillus sp. AD with simultaneous production of chitinase and chitin oligosaccharides.
    Kumar A; Kumar D; George N; Sharma P; Gupta N
    Int J Biol Macromol; 2018 Apr; 109():263-272. PubMed ID: 29246877
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and biological evaluation of novel 2,4,5-triarylimidazole-1,2,3-triazole derivatives via click chemistry as α-glucosidase inhibitors.
    Wang G; Peng Z; Wang J; Li J; Li X
    Bioorg Med Chem Lett; 2016 Dec; 26(23):5719-5723. PubMed ID: 27810241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. α-Glucosidase Inhibitors from the Marine-Derived Fungus Aspergillus flavipes HN4-13.
    Wang C; Guo L; Hao J; Wang L; Zhu W
    J Nat Prod; 2016 Nov; 79(11):2977-2981. PubMed ID: 27933892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrasonic synthesis of tyramine derivatives as novel inhibitors of α-glucosidase in vitro.
    Siddiqui H; Bashir MA; Javaid K; Nizamani A; Bano H; Yousuf S; Rahman AU; Choudhary MI
    J Enzyme Inhib Med Chem; 2016 Dec; 31(6):1392-403. PubMed ID: 26912275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural differences between chitin and chitosan extracted from three different marine sources.
    Hajji S; Younes I; Ghorbel-Bellaaj O; Hajji R; Rinaudo M; Nasri M; Jellouli K
    Int J Biol Macromol; 2014 Apr; 65():298-306. PubMed ID: 24468048
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and molecular docking studies of potent α-glucosidase inhibitors based on biscoumarin skeleton.
    Khan KM; Rahim F; Wadood A; Kosar N; Taha M; Lalani S; Khan A; Fakhri MI; Junaid M; Rehman W; Khan M; Perveen S; Sajid M; Choudhary MI
    Eur J Med Chem; 2014 Jun; 81():245-52. PubMed ID: 24844449
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A concise synthesis and evaluation of new malonamide derivatives as potential α-glucosidase inhibitors.
    Islam MS; Barakat A; Al-Majid AM; Ghabbour HA; Rahman AF; Javaid K; Imad R; Yousuf S; Choudhary MI
    Bioorg Med Chem; 2016 Apr; 24(8):1675-82. PubMed ID: 26972921
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isatin based Schiff bases as inhibitors of α-glucosidase: Synthesis, characterization, in vitro evaluation and molecular docking studies.
    Rahim F; Malik F; Ullah H; Wadood A; Khan F; Javid MT; Taha M; Rehman W; Ur Rehman A; Khan KM
    Bioorg Chem; 2015 Jun; 60():42-8. PubMed ID: 25955493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. α-Glucosidase Inhibitors from the Fungus Aspergillus terreus 3.05358.
    Shan WG; Wu ZY; Pang WW; Ma LF; Ying YM; Zhan ZJ
    Chem Biodivers; 2015 Nov; 12(11):1718-24. PubMed ID: 26567949
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential of lignin from Canna edulis ker residue in the inhibition of α-d-glucosidase: Kinetics and interaction mechanism merging with docking simulation.
    Xie F; Gong S; Zhang W; Wu J; Wang Z
    Int J Biol Macromol; 2017 Feb; 95():592-602. PubMed ID: 27908712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microbial Conversion of Shrimp Heads to Proteases and Chitin as an Effective Dye Adsorbent.
    Doan CT; Tran TN; Wang CL; Wang SL
    Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 32998333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment.
    Sabiu S; O'Neill FH; Ashafa AOT
    J Ethnopharmacol; 2016 May; 183():1-8. PubMed ID: 26902829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis, biological evaluation and molecular docking study of N-arylbenzo[d]oxazol-2-amines as potential α-glucosidase inhibitors.
    Wang G; Peng Z; Wang J; Li J; Li X
    Bioorg Med Chem; 2016 Nov; 24(21):5374-5379. PubMed ID: 27614916
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis, in vitro evaluation and molecular docking studies of novel triazine-triazole derivatives as potential α-glucosidase inhibitors.
    Wang G; Peng Z; Wang J; Li X; Li J
    Eur J Med Chem; 2017 Jan; 125():423-429. PubMed ID: 27689725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.