These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 29112322)
1. Ab Initio Ligand Field Molecular Mechanics and the Nature of Metal-Ligand π-Bonding in Fe(II) 2,6-di(pyrazol-1-yl)pyridine Spin Crossover Complexes. Deeth RJ; Halcrow MA; Kershaw Cook LJ; Raithby PR Chemistry; 2018 Apr; 24(20):5204-5212. PubMed ID: 29112322 [TBL] [Abstract][Full Text] [Related]
2. A Unified Treatment of the Relationship Between Ligand Substituents and Spin State in a Family of Iron(II) Complexes. Kershaw Cook LJ; Kulmaczewski R; Mohammed R; Dudley S; Barrett SA; Little MA; Deeth RJ; Halcrow MA Angew Chem Int Ed Engl; 2016 Mar; 55(13):4327-31. PubMed ID: 26929084 [TBL] [Abstract][Full Text] [Related]
3. A Survey of the Angular Distortion Landscape in the Coordination Geometries of High-Spin Iron(II) 2,6-Bis(pyrazolyl)pyridine Complexes. Capel Berdiell I; Michaels E; Munro OQ; Halcrow MA Inorg Chem; 2024 Feb; 63(5):2732-2744. PubMed ID: 38258555 [TBL] [Abstract][Full Text] [Related]
4. Quantitative Assessment of Ligand Substituent Effects on σ- and π-Contributions to Fe-N Bonds in Spin Crossover Fe Bondì L; Garden AL; Totti F; Jerabek P; Brooker S Chemistry; 2022 Apr; 28(22):e202104314. PubMed ID: 35224791 [TBL] [Abstract][Full Text] [Related]
5. Ligand field stabilization and activation energies revisited: molecular modeling of the thermodynamic and kinetic properties of divalent, first-row aqua complexes. Deeth RJ; Randell K Inorg Chem; 2008 Aug; 47(16):7377-88. PubMed ID: 18652450 [TBL] [Abstract][Full Text] [Related]
6. Lattice solvent- and substituent-dependent spin-crossover in isomeric iron(II) complexes. Kuppusamy SK; Mizuno A; Kämmerer L; Salamon S; Heinrich B; Bailly C; Šalitroš I; Wende H; Ruben M Dalton Trans; 2024 Jul; 53(26):10851-10865. PubMed ID: 38826041 [TBL] [Abstract][Full Text] [Related]
7. Heteroleptic iron(II) complexes of chiral 2,6-bis(oxazolin-2-yl)-pyridine (PyBox) and 2,6-bis(thiazolin-2-yl)pyridine ligands - the interplay of two different ligands on the metal ion spin sate. Shahid N; Burrows KE; Pask CM; Cespedes O; Howard MJ; McGowan PC; Halcrow MA Dalton Trans; 2022 Mar; 51(11):4262-4274. PubMed ID: 35244669 [TBL] [Abstract][Full Text] [Related]
8. Local coordination geometry and spin state in novel Fe(II) complexes with 2,6-bis(pyrazol-3-yl)pyridine-type ligands as controlled by packing forces: structural correlations. Craig GA; Costa JS; Roubeau O; Teat SJ; Aromí G Chemistry; 2012 Sep; 18(37):11703-15. PubMed ID: 22865637 [TBL] [Abstract][Full Text] [Related]
9. Structural diversity in iron(II) complexes of 2,6-di(pyrazol-1-yl)pyridine and 2,6-di(3-methylpyrazol-1-yl)pyridine. Elhaïk J; Kilner CA; Halcrow MA Dalton Trans; 2006 Feb; (6):823-30. PubMed ID: 16437177 [TBL] [Abstract][Full Text] [Related]
10. Iron(II) Complexes of 2,4-Dipyrazolyl-1,3,5-triazine Derivatives-The Influence of Ligand Geometry on Metal Ion Spin State. Capel Berdiell I; Kulmaczewski R; Halcrow MA Inorg Chem; 2017 Aug; 56(15):8817-8828. PubMed ID: 28699741 [TBL] [Abstract][Full Text] [Related]
11. Spin-crossover in iron(II)-phenylene ethynylene-2,6-di(pyrazol-1-yl) pyridine hybrids: toward switchable molecular wire-like architectures. Senthil Kumar K; Šalitroš I; Heinrich B; Moldovan S; Mauro M; Ruben M J Phys Condens Matter; 2020 May; 32(20):204002. PubMed ID: 31945748 [TBL] [Abstract][Full Text] [Related]
12. On the performance of ligand field molecular mechanics for model complexes containing the peroxido-bridged [Cu2O2]2+ center. Diedrich C; Deeth RJ Inorg Chem; 2008 Apr; 47(7):2494-506. PubMed ID: 18293917 [TBL] [Abstract][Full Text] [Related]
13. Bistable spin-crossover in a new series of [Fe(BPP-R) Senthil Kumar K; Del Giudice N; Heinrich B; Douce L; Ruben M Dalton Trans; 2020 Oct; 49(40):14258-14267. PubMed ID: 33026376 [TBL] [Abstract][Full Text] [Related]
14. Molecular modelling of Jahn-Teller distortions in Cu(II)N6 complexes: elongations, compressions and the pathways in between. Deeth RJ; Hearnshaw LJ Dalton Trans; 2006 Feb; (8):1092-100. PubMed ID: 16474895 [TBL] [Abstract][Full Text] [Related]
15. Unravelling the spin-state of solvated [Fe(bpp) Giménez-López MDC; Clemente-León M; Giménez-Saiz C Dalton Trans; 2018 Aug; 47(31):10453-10462. PubMed ID: 29789828 [TBL] [Abstract][Full Text] [Related]
16. Above room temperature spin crossover in thioamide-functionalised 2,6-bis(pyrazol-1-yl)pyridine iron(ii) complexes. Attwood M; Akutsu H; Martin L; Cruickshank D; Turner SS Dalton Trans; 2018 Dec; 48(1):90-98. PubMed ID: 30456406 [TBL] [Abstract][Full Text] [Related]
17. Detailed ab initio first-principles study of the magnetic anisotropy in a family of trigonal pyramidal iron(II) pyrrolide complexes. Atanasov M; Ganyushin D; Pantazis DA; Sivalingam K; Neese F Inorg Chem; 2011 Aug; 50(16):7460-77. PubMed ID: 21744845 [TBL] [Abstract][Full Text] [Related]
18. Integration of Ligand Field Molecular Mechanics in Tinker. Foscato M; Deeth RJ; Jensen VR J Chem Inf Model; 2015 Jun; 55(6):1282-90. PubMed ID: 25970002 [TBL] [Abstract][Full Text] [Related]
19. Towards the Molecular Design of Spin-Crossover Complexes of 2,6-Bis(pyrazol-3-yl)pyridines. Nikovskiy I; Polezhaev A; Novikov V; Aleshin D; Pavlov A; Saffiulina E; Aysin R; Dorovatovskii P; Nodaraki L; Tuna F; Nelyubina Y Chemistry; 2020 May; 26(25):5629-5638. PubMed ID: 31967374 [TBL] [Abstract][Full Text] [Related]
20. Evidence of crystal packing effects in stabilizing high or low spin states of iron(ii) complexes with functionalized 2,6-bis(pyrazol-1-yl)pyridine ligands. Bridonneau N; Rigamonti L; Poneti G; Pinkowicz D; Forni A; Cornia A Dalton Trans; 2017 Mar; 46(12):4075-4085. PubMed ID: 28272635 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]