BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 29112395)

  • 1. Deciphering Nature's Intricate Way of N,S-Dimethylating l-Cysteine: Sequential Action of Two Bifunctional Adenylation Domains.
    Mori S; Garzan A; Tsodikov OV; Garneau-Tsodikova S
    Biochemistry; 2017 Nov; 56(46):6087-6097. PubMed ID: 29112395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenylation and S-methylation of cysteine by the bifunctional enzyme TioN in thiocoraline biosynthesis.
    Al-Mestarihi AH; Villamizar G; Fernández J; Zolova OE; Lombó F; Garneau-Tsodikova S
    J Am Chem Soc; 2014 Dec; 136(49):17350-4. PubMed ID: 25409494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the limits of interrupted adenylation domains by engineering a trifunctional enzyme capable of adenylation, N-, and S-methylation.
    Lundy TA; Mori S; Garneau-Tsodikova S
    Org Biomol Chem; 2019 Jan; 17(5):1169-1175. PubMed ID: 30644493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dipeptide synthesis by internal adenylation domains of a multidomain enzyme involved in nonribosomal peptide synthesis.
    Abe T; Kobayashi K; Kawamura S; Sakaguchi T; Shiiba K; Kobayashi M
    J Gen Appl Microbiol; 2019 Mar; 65(1):1-10. PubMed ID: 29899192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Bifunctional Enzymes Capable of Adenylating and Selectively Methylating the Side Chain or Core of Amino Acids.
    Lundy TA; Mori S; Garneau-Tsodikova S
    ACS Synth Biol; 2018 Feb; 7(2):399-404. PubMed ID: 29393631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NRPS Protein MarQ Catalyzes Flexible Adenylation and Specific S-Methylation.
    Huang T; Duan Y; Zou Y; Deng Z; Lin S
    ACS Chem Biol; 2018 Sep; 13(9):2387-2391. PubMed ID: 30160473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unimodular Methylation by Adenylation-Thiolation Domains Containing an Embedded Methyltransferase.
    Mori S; Garneau-Tsodikova S; Tsodikov OV
    J Mol Biol; 2020 Oct; 432(21):5802-5808. PubMed ID: 32920052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding Substrate Promiscuity by Engineering a Novel Adenylating-Methylating NRPS Bifunctional Enzyme.
    Shrestha SK; Garneau-Tsodikova S
    Chembiochem; 2016 Jul; 17(14):1328-32. PubMed ID: 27128382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a Unique Interrupted Adenylation Domain That Can Catalyze Three Reactions.
    Lundy TA; Mori S; Thamban Chandrika N; Garneau-Tsodikova S
    ACS Chem Biol; 2020 Jan; 15(1):282-289. PubMed ID: 31887013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interrupted adenylation domains: unique bifunctional enzymes involved in nonribosomal peptide biosynthesis.
    Labby KJ; Watsula SG; Garneau-Tsodikova S
    Nat Prod Rep; 2015 May; 32(5):641-53. PubMed ID: 25622971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for backbone N-methylation by an interrupted adenylation domain.
    Mori S; Pang AH; Lundy TA; Garzan A; Tsodikov OV; Garneau-Tsodikova S
    Nat Chem Biol; 2018 May; 14(5):428-430. PubMed ID: 29556104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualizing the Adenylation Activities and Protein-Protein Interactions of Aryl Acid Adenylating Enzymes.
    Ishikawa F; Kasai S; Kakeya H; Tanabe G
    Chembiochem; 2017 Nov; 18(22):2199-2204. PubMed ID: 28871667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenylation Domains in Nonribosomal Peptide Engineering.
    Stanišić A; Kries H
    Chembiochem; 2019 Jun; 20(11):1347-1356. PubMed ID: 30629787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed evolution of a gatekeeper domain in nonribosomal peptide synthesis.
    Villiers B; Hollfelder F
    Chem Biol; 2011 Oct; 18(10):1290-9. PubMed ID: 22035798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Characterization of PyrG, an Unusual Nonribosomal Peptide Synthetase Module from the Pyridomycin Biosynthetic Pathway.
    Huang T; Li L; Brock NL; Deng Z; Lin S
    Chembiochem; 2016 Aug; 17(15):1421-5. PubMed ID: 27197800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial biosynthesis of cyclic lipopeptide antibiotics: a model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways.
    Baltz RH
    ACS Synth Biol; 2014 Oct; 3(10):748-58. PubMed ID: 23654258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxamate-based colorimetric assay to assess amide bond formation by adenylation domain of nonribosomal peptide synthetases.
    Hara R; Suzuki R; Kino K
    Anal Biochem; 2015 May; 477():89-91. PubMed ID: 25615416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate Detection of Adenylation Domain Functions in Nonribosomal Peptide Synthetases by an Enzyme-linked Immunosorbent Assay System Using Active Site-directed Probes for Adenylation Domains.
    Ishikawa F; Miyamoto K; Konno S; Kasai S; Kakeya H
    ACS Chem Biol; 2015 Dec; 10(12):2816-26. PubMed ID: 26474351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stuffed Methyltransferase Catalyzes the Penultimate Step of Pyochelin Biosynthesis.
    Ronnebaum TA; McFarlane JS; Prisinzano TE; Booker SJ; Lamb AL
    Biochemistry; 2019 Feb; 58(6):665-678. PubMed ID: 30525512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epsilon-poly-L-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase.
    Yamanaka K; Maruyama C; Takagi H; Hamano Y
    Nat Chem Biol; 2008 Dec; 4(12):766-72. PubMed ID: 18997795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.