These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 29112683)
1. Targeting de novo lipogenesis as a novel approach in anti-cancer therapy. Stoiber K; Nagło O; Pernpeintner C; Zhang S; Koeberle A; Ulrich M; Werz O; Müller R; Zahler S; Lohmüller T; Feldmann J; Braig S Br J Cancer; 2018 Jan; 118(1):43-51. PubMed ID: 29112683 [TBL] [Abstract][Full Text] [Related]
2. Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells. Corominas-Faja B; Cuyàs E; Gumuzio J; Bosch-Barrera J; Leis O; Martin ÁG; Menendez JA Oncotarget; 2014 Sep; 5(18):8306-16. PubMed ID: 25246709 [TBL] [Abstract][Full Text] [Related]
3. Metabolic regulation of invadopodia and invasion by acetyl-CoA carboxylase 1 and de novo lipogenesis. Scott KE; Wheeler FB; Davis AL; Thomas MJ; Ntambi JM; Seals DF; Kridel SJ PLoS One; 2012; 7(1):e29761. PubMed ID: 22238651 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of Acetyl-CoA Carboxylase 1 (ACC1) and 2 (ACC2) Reduces Proliferation and De Novo Lipogenesis of EGFRvIII Human Glioblastoma Cells. Jones JE; Esler WP; Patel R; Lanba A; Vera NB; Pfefferkorn JA; Vernochet C PLoS One; 2017; 12(1):e0169566. PubMed ID: 28081256 [TBL] [Abstract][Full Text] [Related]
7. Ginkgolic acid suppresses the development of pancreatic cancer by inhibiting pathways driving lipogenesis. Ma J; Duan W; Han S; Lei J; Xu Q; Chen X; Jiang Z; Nan L; Li J; Chen K; Han L; Wang Z; Li X; Wu E; Huo X Oncotarget; 2015 Aug; 6(25):20993-1003. PubMed ID: 25895130 [TBL] [Abstract][Full Text] [Related]
8. Fatty acid synthase inhibition induces differential expression of genes involved in apoptosis and cell proliferation in ocular cancer cells. Deepa PR; Vandhana S; Krishnakumar S Nutr Cancer; 2013; 65(2):311-6. PubMed ID: 23441619 [TBL] [Abstract][Full Text] [Related]
9. Chemical genetics in tumor lipogenesis. Braig S Biotechnol Adv; 2018 Nov; 36(6):1724-1729. PubMed ID: 29447918 [TBL] [Abstract][Full Text] [Related]
10. 3D Growth of Cancer Cells Elicits Sensitivity to Kinase Inhibitors but Not Lipid Metabolism Modifiers. Jones DT; Valli A; Haider S; Zhang Q; Smethurst EA; Schug ZT; Peck B; Aboagye EO; Critchlow SE; Schulze A; Gottlieb E; Wakelam MJO; Harris AL Mol Cancer Ther; 2019 Feb; 18(2):376-388. PubMed ID: 30478149 [TBL] [Abstract][Full Text] [Related]
11. Overexpressed Fatty Acid Synthase in Gastrointestinal Stromal Tumors: Targeting a Progression-Associated Metabolic Driver Enhances the Antitumor Effect of Imatinib. Li CF; Fang FM; Chen YY; Liu TT; Chan TC; Yu SC; Chen LT; Huang HY Clin Cancer Res; 2017 Aug; 23(16):4908-4918. PubMed ID: 28442505 [No Abstract] [Full Text] [Related]
12. Identification of the yeast ACC1 gene product (acetyl-CoA carboxylase) as the target of the polyketide fungicide soraphen A. Vahlensieck HF; Pridzun L; Reichenbach H; Hinnen A Curr Genet; 1994 Feb; 25(2):95-100. PubMed ID: 7916271 [TBL] [Abstract][Full Text] [Related]
13. Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Beckers A; Organe S; Timmermans L; Scheys K; Peeters A; Brusselmans K; Verhoeven G; Swinnen JV Cancer Res; 2007 Sep; 67(17):8180-7. PubMed ID: 17804731 [TBL] [Abstract][Full Text] [Related]
14. Global gene deregulations in FASN silenced retinoblastoma cancer cells: molecular and clinico-pathological correlations. Sangeetha M; Deepa PR; Rishi P; Khetan V; Krishnakumar S J Cell Biochem; 2015 Nov; 116(11):2676-94. PubMed ID: 25958981 [TBL] [Abstract][Full Text] [Related]
15. Orlistat as a FASN inhibitor and multitargeted agent for cancer therapy. Schcolnik-Cabrera A; Chávez-Blanco A; Domínguez-Gómez G; Taja-Chayeb L; Morales-Barcenas R; Trejo-Becerril C; Perez-Cardenas E; Gonzalez-Fierro A; Dueñas-González A Expert Opin Investig Drugs; 2018 May; 27(5):475-489. PubMed ID: 29723075 [TBL] [Abstract][Full Text] [Related]
16. V-ATPase inhibition increases cancer cell stiffness and blocks membrane related Ras signaling - a new option for HCC therapy. Bartel K; Winzi M; Ulrich M; Koeberle A; Menche D; Werz O; Müller R; Guck J; Vollmar AM; von Schwarzenberg K Oncotarget; 2017 Feb; 8(6):9476-9487. PubMed ID: 28036299 [TBL] [Abstract][Full Text] [Related]
17. Hepatic de novo lipogenesis is present in liver-specific ACC1-deficient mice. Harada N; Oda Z; Hara Y; Fujinami K; Okawa M; Ohbuchi K; Yonemoto M; Ikeda Y; Ohwaki K; Aragane K; Tamai Y; Kusunoki J Mol Cell Biol; 2007 Mar; 27(5):1881-8. PubMed ID: 17210641 [TBL] [Abstract][Full Text] [Related]
18. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Rysman E; Brusselmans K; Scheys K; Timmermans L; Derua R; Munck S; Van Veldhoven PP; Waltregny D; Daniëls VW; Machiels J; Vanderhoydonc F; Smans K; Waelkens E; Verhoeven G; Swinnen JV Cancer Res; 2010 Oct; 70(20):8117-26. PubMed ID: 20876798 [TBL] [Abstract][Full Text] [Related]
19. Salicylate activates AMPK and synergizes with metformin to reduce the survival of prostate and lung cancer cells ex vivo through inhibition of de novo lipogenesis. O'Brien AJ; Villani LA; Broadfield LA; Houde VP; Galic S; Blandino G; Kemp BE; Tsakiridis T; Muti P; Steinberg GR Biochem J; 2015 Jul; 469(2):177-87. PubMed ID: 25940306 [TBL] [Abstract][Full Text] [Related]
20. Metformin-induced energy deficiency leads to the inhibition of lipogenesis in prostate cancer cells. Loubière C; Goiran T; Laurent K; Djabari Z; Tanti JF; Bost F Oncotarget; 2015 Jun; 6(17):15652-61. PubMed ID: 26002551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]