These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29112725)

  • 21. The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium.
    Gerstel U; Römling U
    Res Microbiol; 2003 Dec; 154(10):659-67. PubMed ID: 14643403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of biofilm formation by marT in Salmonella Typhimurium.
    Eran Z; Akçelik M; Yazıcı BC; Özcengiz G; Akçelik N
    Mol Biol Rep; 2020 Jul; 47(7):5041-5050. PubMed ID: 32529277
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Ray S; Da Costa R; Thakur S; Nandi D
    Microbiology (Reading); 2020 May; 166(5):460-473. PubMed ID: 32159509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of MgtC, a virulence factor of Salmonella enterica Serovar Typhi.
    Retamal P; Castillo-Ruiz M; Mora GC
    PLoS One; 2009; 4(5):e5551. PubMed ID: 19436747
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A rule governing the FtsH-mediated proteolysis of the MgtC virulence protein from Salmonella enterica serovar Typhimurium.
    Baek J; Choi E; Lee EJ
    J Microbiol; 2018 Aug; 56(8):565-570. PubMed ID: 30047085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unphosphorylated CsgD controls biofilm formation in Salmonella enterica serovar Typhimurium.
    Zakikhany K; Harrington CR; Nimtz M; Hinton JC; Römling U
    Mol Microbiol; 2010 Aug; 77(3):771-86. PubMed ID: 20545866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hfq and Hfq-dependent small RNAs are major contributors to multicellular development in Salmonella enterica serovar Typhimurium.
    Monteiro C; Papenfort K; Hentrich K; Ahmad I; Le Guyon S; Reimann R; Grantcharova N; Römling U
    RNA Biol; 2012 Apr; 9(4):489-502. PubMed ID: 22336758
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of the Salmonella MgtR peptide as an antagonist of the Mycobacterium MgtC virulence factor.
    Belon C; Rosas Olvera M; Vives E; Kremer L; Gannoun-Zaki L; Blanc-Potard AB
    Future Microbiol; 2016; 11(2):215-25. PubMed ID: 26849775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of a Salmonella virulence locus by an ATP-sensing leader messenger RNA.
    Lee EJ; Groisman EA
    Nature; 2012 Jun; 486(7402):271-5. PubMed ID: 22699622
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual role of the MgtC virulence factor in host and non-host environments.
    Rang C; Alix E; Felix C; Heitz A; Tasse L; Blanc-Potard AB
    Mol Microbiol; 2007 Jan; 63(2):605-22. PubMed ID: 17176255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bistable expression of CsgD in biofilm development of Salmonella enterica serovar typhimurium.
    Grantcharova N; Peters V; Monteiro C; Zakikhany K; Römling U
    J Bacteriol; 2010 Jan; 192(2):456-66. PubMed ID: 19897646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The malS-5'UTR weakens the ability of Salmonella enterica serovar Typhi to survive in macrophages by increasing intracellular ATP levels.
    Dong F; Xia L; Lu R; Zhao X; Zhang Y; Zhang Y; Huang X
    Microb Pathog; 2018 Feb; 115():321-331. PubMed ID: 29306008
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of biofilm components in Salmonella enterica serovar Typhimurium by lytic transglycosylases involved in cell wall turnover.
    Monteiro C; Fang X; Ahmad I; Gomelsky M; Römling U
    J Bacteriol; 2011 Dec; 193(23):6443-51. PubMed ID: 21965572
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A protein that controls the onset of a
    Yeom J; Pontes MH; Choi J; Groisman EA
    EMBO J; 2018 Jul; 37(14):. PubMed ID: 29858228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular and molecular responses of Salmonella Typhimurium to antimicrobial-induced stresses during the planktonic-to-biofilm transition.
    Zou Y; Woo J; Ahn J
    Lett Appl Microbiol; 2012 Oct; 55(4):274-82. PubMed ID: 22803575
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acid environments affect biofilm formation and gene expression in isolates of Salmonella enterica Typhimurium DT104.
    O'Leary D; McCabe EM; McCusker MP; Martins M; Fanning S; Duffy G
    Int J Food Microbiol; 2015 Aug; 206():7-16. PubMed ID: 25912312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biofilm formation in field strains of Salmonella enterica serovar Typhimurium: identification of a new colony morphology type and the role of SGI1 in biofilm formation.
    Malcova M; Hradecka H; Karpiskova R; Rychlik I
    Vet Microbiol; 2008 Jun; 129(3-4):360-6. PubMed ID: 18242887
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of biofilm-forming abilities of antibiotic-resistant Salmonella typhimurium DT104 on hydrophobic abiotic surfaces.
    Ngwai YB; Adachi Y; Ogawa Y; Hara H
    J Microbiol Immunol Infect; 2006 Aug; 39(4):278-91. PubMed ID: 16926973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The cellulose synthase BcsA plays a role in interactions of Salmonella typhimurium with Acanthamoeba castellanii genotype T4.
    Gill MA; Rafique MW; Manan T; Slaeem S; Römling U; Matin A; Ahmad I
    Parasitol Res; 2018 Jul; 117(7):2283-2289. PubMed ID: 29797083
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biofilm formation ability of Salmonella enterica serovar Typhimurium acrAB mutants.
    Schlisselberg DB; Kler E; Kisluk G; Shachar D; Yaron S
    Int J Antimicrob Agents; 2015 Oct; 46(4):456-9. PubMed ID: 26260191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.