These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29112978)

  • 1. Personalized blood glucose prediction: A hybrid approach using grammatical evolution and physiological models.
    Contreras I; Oviedo S; Vettoretti M; Visentin R; Vehí J
    PLoS One; 2017; 12(11):e0187754. PubMed ID: 29112978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of blood glucose predictors: the prediction-error grid analysis.
    Sivananthan S; Naumova V; Man CD; Facchinetti A; Renard E; Cobelli C; Pereverzyev SV
    Diabetes Technol Ther; 2011 Aug; 13(8):787-96. PubMed ID: 21612393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy assessment of online glucose monitoring by a subcutaneous enzymatic glucose sensor during exercise in patients with type 1 diabetes treated by continuous subcutaneous insulin infusion.
    Radermecker RP; Fayolle C; Brun JF; Bringer J; Renard E
    Diabetes Metab; 2013 May; 39(3):258-62. PubMed ID: 23522730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural network-based real-time prediction of glucose in patients with insulin-dependent diabetes.
    Pappada SM; Cameron BD; Rosman PM; Bourey RE; Papadimos TJ; Olorunto W; Borst MJ
    Diabetes Technol Ther; 2011 Feb; 13(2):135-41. PubMed ID: 21284480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data Based Prediction of Blood Glucose Concentrations Using Evolutionary Methods.
    Hidalgo JI; Colmenar JM; Kronberger G; Winkler SM; Garnica O; Lanchares J
    J Med Syst; 2017 Aug; 41(9):142. PubMed ID: 28791547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous glucose monitoring in subcutaneous tissue using factory-calibrated sensors: a pilot study.
    Hoss U; Jeddi I; Schulz M; Budiman E; Bhogal C; McGarraugh G
    Diabetes Technol Ther; 2010 Aug; 12(8):591-7. PubMed ID: 20615099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid model identification for online subcutaneous glucose concentration prediction for new subjects with type I diabetes.
    Zhao C; Yu C
    IEEE Trans Biomed Eng; 2015 May; 62(5):1333-44. PubMed ID: 25561588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal glucose models for predicting subcutaneous glucose concentration in humans.
    Gani A; Gribok AV; Lu Y; Ward WK; Vigersky RA; Reifman J
    IEEE Trans Inf Technol Biomed; 2010 Jan; 14(1):157-65. PubMed ID: 19858035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinically Accurate Prediction of Glucose Levels in Patients with Type 1 Diabetes.
    Amar Y; Shilo S; Oron T; Amar E; Phillip M; Segal E
    Diabetes Technol Ther; 2020 Aug; 22(8):562-569. PubMed ID: 31928415
    [No Abstract]   [Full Text] [Related]  

  • 10. The surveillance error grid.
    Klonoff DC; Lias C; Vigersky R; Clarke W; Parkes JL; Sacks DB; Kirkman MS; Kovatchev B;
    J Diabetes Sci Technol; 2014 Jul; 8(4):658-72. PubMed ID: 25562886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Home blood glucose prediction: clinical feasibility and validation in islet cell transplantation candidates.
    Albisser AM; Baidal D; Alejandro R; Ricordi C
    Diabetologia; 2005 Jul; 48(7):1273-9. PubMed ID: 15933858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using meta-differential evolution to enhance a calculation of a continuous blood glucose level.
    Koutny T
    Comput Methods Programs Biomed; 2016 Sep; 133():45-54. PubMed ID: 27393799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utility of Big Data in Predicting Short-Term Blood Glucose Levels in Type 1 Diabetes Mellitus Through Machine Learning Techniques.
    Rodríguez-Rodríguez I; Chatzigiannakis I; Rodríguez JV; Maranghi M; Gentili M; Zamora-Izquierdo MÁ
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31623111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An online failure detection method of the glucose sensor-insulin pump system: improved overnight safety of type-1 diabetic subjects.
    Facchinetti A; Del Favero S; Sparacino G; Cobelli C
    IEEE Trans Biomed Eng; 2013 Feb; 60(2):406-16. PubMed ID: 23193300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information.
    Zecchin C; Facchinetti A; Sparacino G; Cobelli C
    Comput Methods Programs Biomed; 2014; 113(1):144-52. PubMed ID: 24192453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive Continuous Glucose Monitoring Using a Multisensor-Based Glucometer and Time Series Analysis.
    Geng Z; Tang F; Ding Y; Li S; Wang X
    Sci Rep; 2017 Oct; 7(1):12650. PubMed ID: 28978974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood glucose level prediction based on support vector regression using mobile platforms.
    Reymann MP; Dorschky E; Groh BH; Martindale C; Blank P; Eskofier BM
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2990-2993. PubMed ID: 28268941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The accuracy and efficacy of real-time continuous glucose monitoring sensor in patients with type 1 diabetes.
    Mastrototaro J; Shin J; Marcus A; Sulur G;
    Diabetes Technol Ther; 2008 Oct; 10(5):385-90. PubMed ID: 18715215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New features and performance of a next-generation SEVEN-day continuous glucose monitoring system with short lag time.
    Bailey T; Zisser H; Chang A
    Diabetes Technol Ther; 2009 Dec; 11(12):749-55. PubMed ID: 20001675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous glucose monitoring: quality of hypoglycaemia detection.
    Zijlstra E; Heise T; Nosek L; Heinemann L; Heckermann S
    Diabetes Obes Metab; 2013 Feb; 15(2):130-5. PubMed ID: 22974231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.