These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 29113069)
1. Characterization and Differentiation of Petroleum-Derived Products by E-Nose Fingerprints. Ferreiro-González M; Barbero GF; Palma M; Ayuso J; Álvarez JA; Barroso CG Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29113069 [TBL] [Abstract][Full Text] [Related]
2. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose. Ferreiro-González M; Barbero GF; Palma M; Ayuso J; Álvarez JA; Barroso CG Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27187407 [TBL] [Abstract][Full Text] [Related]
3. An Electronic Nose Based Method for the Discrimination of Weathered Petroleum-Derived Products. Aliaño-González MJ; Ferreiro-González M; Barbero GF; Ayuso J; Álvarez JA; Palma M; Barroso CG Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29986465 [TBL] [Abstract][Full Text] [Related]
4. Discrimination of Ignitable Liquid Residues in Burned Petroleum-Derived Substrates by Using HS-MS eNose and Chemometrics. Falatová B; Ferreiro-González M; P Calle JL; Álvarez JÁ; Palma M Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530319 [TBL] [Abstract][Full Text] [Related]
5. Combined cluster and discriminant analysis: An efficient chemometric approach in diesel fuel characterization. Novák M; Palya D; Bodai Z; Nyiri Z; Magyar N; Kovács J; Eke Z Forensic Sci Int; 2017 Jan; 270():61-69. PubMed ID: 27915188 [TBL] [Abstract][Full Text] [Related]
6. Chemometric analysis of diesel fuel for forensic and environmental applications. Hupp AM; Marshall LJ; Campbell DI; Smith RW; McGuffin VL Anal Chim Acta; 2008 Jan; 606(2):159-71. PubMed ID: 18082647 [TBL] [Abstract][Full Text] [Related]
7. Differentiation of types of crude oils in polluted soil samples by headspace-fast gas chromatography-mass spectrometry. Pavón JL; Peña AG; Pinto CG; Cordero BM J Chromatogr A; 2006 Dec; 1137(1):101-9. PubMed ID: 17056051 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous determination of hydrocarbon renewable diesel, biodiesel and petroleum diesel contents in diesel fuel blends using near infrared (NIR) spectroscopy and chemometrics. Alves JC; Poppi RJ Analyst; 2013 Nov; 138(21):6477-87. PubMed ID: 23991427 [TBL] [Abstract][Full Text] [Related]
9. A novel method for qualitative analysis of edible oil oxidation using an electronic nose. Xu L; Yu X; Liu L; Zhang R Food Chem; 2016 Jul; 202():229-35. PubMed ID: 26920289 [TBL] [Abstract][Full Text] [Related]
10. Deleterious effects of water-soluble fraction of petroleum, diesel and gasoline on marine pejerrey Odontesthes argentinensis larvae. Rodrigues RV; Miranda-Filho KC; Gusmão EP; Moreira CB; Romano LA; Sampaio LA Sci Total Environ; 2010 Apr; 408(9):2054-9. PubMed ID: 20167351 [TBL] [Abstract][Full Text] [Related]
11. Application of an HS-MS for the detection of ignitable liquids from fire debris. Ferreiro-González M; Ayuso J; Álvarez JA; Palma M; Barroso CG Talanta; 2015 Sep; 142():150-6. PubMed ID: 26003705 [TBL] [Abstract][Full Text] [Related]
12. Characterization and classification of the aroma of beer samples by means of an MS e-nose and chemometric tools. Vera L; Aceña L; Guasch J; Boqué R; Mestres M; Busto O Anal Bioanal Chem; 2011 Feb; 399(6):2073-81. PubMed ID: 21061001 [TBL] [Abstract][Full Text] [Related]
13. Study of the Weathering Process of Gasoline by eNose. Aliaño-González MJ; Ferreiro-González M; Barbero GF; Ayuso J; Palma M; Barroso CG Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29304020 [TBL] [Abstract][Full Text] [Related]
14. Characterization of Biodegraded Ignitable Liquids by Headspace-Ion Mobility Spectrometry. P Calle JL; Ferreiro-González M; Aliaño-González MJ; F Barbero G; Palma M Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113899 [TBL] [Abstract][Full Text] [Related]
15. Novel method based on ion mobility spectrometry sum spectrum for the characterization of ignitable liquids in fire debris. Aliaño-González MJ; Ferreiro-González M; Barbero GF; Palma M Talanta; 2019 Jul; 199():189-194. PubMed ID: 30952245 [TBL] [Abstract][Full Text] [Related]
16. A method for the detection of hydrocarbon pollution in soils by headspace mass spectrometry and pattern recognition techniques. Pérez Pavón JL; Del Nogal Sanchez M; Pinto CG; Fernández Laespada ME; Cordero BM; Peña AG Anal Chem; 2003 May; 75(9):2034-41. PubMed ID: 12720337 [TBL] [Abstract][Full Text] [Related]
17. Headspace mass spectrometry methodology: application to oil spill identification in soils. Pérez Pavón JL; García Pinto C; Guerrero Peña A; Moreno Cordero B Anal Bioanal Chem; 2008 May; 391(2):599-607. PubMed ID: 18421446 [TBL] [Abstract][Full Text] [Related]
18. Interpolation and extrapolation problems of multivariate regression in analytical chemistry: benchmarking the robustness on near-infrared (NIR) spectroscopy data. Balabin RM; Smirnov SV Analyst; 2012 Apr; 137(7):1604-10. PubMed ID: 22337290 [TBL] [Abstract][Full Text] [Related]
19. Rapid discrimination of Apiaceae plants by electronic nose coupled with multivariate statistical analyses. Lin H; Yan Y; Zhao T; Peng L; Zou H; Li J; Yang X; Xiong Y; Wang M; Wu H J Pharm Biomed Anal; 2013 Oct; 84():1-4. PubMed ID: 23777641 [TBL] [Abstract][Full Text] [Related]
20. Screening Brazilian commercial gasoline quality by hydrogen nuclear magnetic resonance spectroscopic fingerprintings and pattern-recognition multivariate chemometric analysis. Flumignan DL; Boralle N; de Oliveira JE Talanta; 2010 Jun; 82(1):99-105. PubMed ID: 20685442 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]